
JOURNAL OF COMPUTATIONAL LEARNING STRATEGIES & PRACTICES, A02 7

Volum 1, Issue 1 © 2021 JCLSP Published by the CLSP

A Survey of Trilogy Shortest Path Algorithms
Shaista Sarwar, Laiba Shaheen

Abstract—Shortest path problem is one of the most classical problem in graph theory, aiming to discover the shortest path between two nodes in a
graph. In this problem, we have to find the minimum-cost tracks or shortest paths between the starting node and final destination in a given graph.This-
work gives a brief introduction of the most famous algorithms of the shortest path problem i.e. Dijkstra’s, Bellman-Ford, and Floyd Warshall algo-
rithm. A comparative analysis of these algorithms is performed based on their advantages, disadvantages, and efficiency, and application areas.

Index Terms—Dijkstra; Shortest path; Floyd; Bellman

——————————u——————————

1 INTRODUCTION
RAPH is made out of nodes and these nodes are connected
by edges and each of these edges has a number next to them

and that number is a weight, the bigger the weight is the more
expensive it is to get from one node to the other node that the
edge connects to[1]. In graph theory, there is a problem to dis-
cover the least expensive path between nodes which is called the
shortest path problem. In this problem, we have tofind the mini-
mum-cost tracks or shortest paths between the starting node and
final destination in a given graph[2]. Several algorithms exist for
the shortest path problem but here we discuss only the most pop-
ular and competitive algorithms of the shortest path problem, and
which are as follow:

1. Dijkstra’s Algorithm
2. Bellman-Ford Algorithm
3. Floyd Warshall Algorithm

In this survey, our research contribution can be summarized as
follows:

• Critical review on each algoritm by sharing its procedure,
main features , applications and limitations.
• Comparisons of the existing shortest path algorithms for bet-
ter understanding.
• And describing which algorithm work best in which scenario.
• Running the algorithms on different graphs and view results.

The rest of the paper is divided into three main sections. Section
2 discusses the basic concept related to the three classical algo-
rithm. Section 3 presents the Comparative analysis of these three
algorithms. In the end, section 4 we discuss the conclusion.

2 THREE CLASSICAL ALGORITHMS
2.1 Dijkstra’s Algorithm
Edsger Dijkstra was a Dutch computer scientist who presents
Dijkstraan algorithm in 1959, in which he finds the mini-
mumroute from the source node to all other nodes in a given
graph[3]. He develops Dijkstra’s algorithm to address one of
the optimization problems i.e. single-source shortest path

problem. Dijkstra algorithm work on the directed weighted
graph in which the values of the edges are always positive[4].
The conception of the Dijkstra algorithm: let G be a directed,
weighted graph in which there is the number of nodes v Î
G.V and these nodes are connected by edges (u, v) Î G.E and
each of these edges have a number next to them and that
number is a weight, the bigger the weight is
more expensive it is to get from one node to the other node
that the edge connects to.
In the Dijkstra algorithm, we manage two sets of vertices i.e.
Q and P.P contains all visited nodes. Atthestart, Q contains
all vertices and P is empty.The set Q contains all non-visited
vertices/nodes and the set In Dijkstra’s algorithm, we main-
tain two attributes for each vertex i.e. v.d and v.p. v.d shows
the shortest path estimate from the source s to vertex v and
v.p gives the predecessor of v. At each step, the smallest entry
from set Q is removed and added to our visited node-set P.
Whenever the node is removed from Q and added in P, then
we compute d(u, v) that node with their adjacent nodes which
are called as neighbors of that selected node. For all vertices
d(u, v) are computed and algorithm stop when allnodes in the
graph are visited[5,6].

2.1.1 Algorithm Procedure
Following is a detailed note of each step of Dijkstra’salgo-

rithm.
Inputs:
1. Graph G with vertices V and edges E.
2. Weight of each edge w (u,v).
3. A source node s Î G.V
Output: the shortest path weight solution set P from source s

node to all other nodes.
 Algorithm:

Step 1: In step 1, we initialize all vertices in a given graph by
setting v.d= ∞ and v.p = NIL. For sources s we set s.d= 0.

Step 2: we initialize two sets i.e. P and Q for visited and non-
visited vertices. At the start, P is empty and inserts all G.V
vertices in Q.

Step 3: now we iterate the following points until Q becomes
empty.
a. First, we extract a vertex v from Q whose v.d is min-

imum among all of them. And add this vertex in set
P.

b. Let’s name the extracted vertex as curr_vertex (cur-
rent vertex). Now check the neighbors of current

G

————————————————
• Shaista Sarwar is with Dept of Computer Science & Information Technol-

ogy ,University of Sargodha, Sargodha.
E-mail: shaistasarwar193@gmail.com.

• Laiba Shaheen is with Dept of Computer Science & Information Technol-
ogy ,University of Sargodha, Sargodha.
 E-mail: laibashaheen0@gmail.com

 JOURNAL OF COMPUTATIONAL LEARNING STRATEGIES & PRACTICES, A02

8

vertex (neighbors also called adjacent nodes of cur-
rent vertex) and name it as neighbor_vertex and for
each neighbor vertex check if neighbor_ver-
tex.d>curr_vertex.d + w (curr_vertex, neighbor_ver-
tex) then set the neighbor_vertex.d = curr_vertex.d
+ w (curr_vertex, neighbor_vertex) and neigh-
bor_vertex.p = curr_vertex.
Compute shorted path estimate and predecessor for
each neighbor of the current vertex.

c. Repeat a and b until all vertices are visited and when Q =
F the algorithm stops.

The algorithm return solution set P which provides us the short-
est path weights from source to every single vertex in a
given graph.

2.1.2 Detailed Example
Here is a simple example that shows the working of Dijkstra’s
algorithm in detail.
Input: a directed graph with non-negative weights and a source
vertex is given.

Find out: we have tocompute the shortest path weight set P.
Solution: following table shows the working of the Dijkstra al-
gorithm.

TABLE 1
ITERATION OF DIJKSTRA ALGORITHM

Itera-
tions

Visited
Nodes

s.d
/
s.p

a.d/
a.p

b.d/
b.p

c.d/
d.p

d.d/
d.p

Initialization 0/ - ∞/ - ∞/ - ∞/ - ∞/ -

1 {s} 0/ - 6/s ∞/ - 7/s ∞/ -

2 {s,a} 0/
-

6/s 11/a 7/s 8/a

3 {s,a,c} 0/
-

6/s 11/a 7/s 8/a

4 {s,a,c,d} 0/ - 6/s 11/a 7/s 8/a

5 {s,a,c,d,b} 0/ - 6/s 11/a 7/s 8/a

2.2 Bellman-Ford Algorithm
To get a short distance from a starting node to all destinations in
the graph that has negative weights we are using a bellmen-ford
algorithm. We use the Bellmen ford algorithm to compute the -
ve cycle exists in the graph or not and if a graph having a -ve-
weight cycle then it will make various from the initial point to
the endpoint, in which every cycle will decrease the rate of short-
est distance. Because of that factor, let us assume that our graph
has no -ve weight cycles the array dist[] will maintain a minimum
length starting the first position to the other nodes. This algorithm
contains many sections, in which every step wants to decrease
the cost from the entire edges by substituting dist[n] the state-
ment dist[m] + e; m and n are the graph nodes, and e will be the
related edge that connects both nodes. Graph required an n - 1
sectionto compute the value of all the shortest distances, but for
those inaccessible graph values, the amount to the array will be
assigned to infinity[7].
A boolean value is returned by the algorithm that specifying that
either there is a -ve weight cycle present that is retrieved by-
source or not. If the graph has no cycle then the shortest distance
is returned by the algorithm, but if the graph contains a -ve cycle
then the algorithm does not return the shortest path. The solution
is their Bellman-Ford algorithm can perceive -ve cycles and de-
fine that they exist. These algorithms return esteem that the neg-
ative cycle is available or not and return the shortest-path. This
algorithm finds the shortest path in a bottom-up manner. The al-
gorithm returns true if the graph does not consist of any negative
weight cycles accessible to the source.
The elementary composition of bellman for dislike Dijkstra's al-
gorithm, althoughin its place of greedy choosing the minimum-
weight vertex not still handled to relaxing, it merely relaxes en-
tire edges and performs this |N| - 1 time, where |N| represents the
number of nodes in the graph[8]. Repetition allows small gaps to
spread precisely across the entire graph, because, in the lack of
-ve cycles, a very short path visits every node at a time.

2.2.1. Algorithm Procedure

Following is a detailed note on each step of the bellman-ford
algorithm.

Inputs:
 1. Graph G with vertices V and edges E.

2. Weight of each edge w (u,v).
3. A source node s Î G.V

Output: the shortest path weight solution set P from source s
to all other nodes.

Algorithm:
Step 1: In this step, we initialize all vertices in a given graph
by setting v.d= ∞ and v.p = NIL. For sources s we set s.d= 0.
Step 2: now we start iterating the vertices and inside this iter-
ation also iterate each edge by their weight by checking that
either there is less cost to reach from one node to another if we
find the minimum cost then we update the node with this cost.
Step 3: Now after updating nodes with their minimum cost we
again make an iteration to check either there is a -ve weight
cycle exist in the graph or not if we find -ve cycle the algorithm
returns False otherwise it returns True.

Fig. 1. An Example of Dijkstra Algorithm

SHAISTA SARWAR, LAIBA SHAHEEN: A SURVEY OF TRILOGY SHORTEST PATH ALGORITHMS

9

2.2.2 Detailed Example
Input: a graph with non-negative weights and a source vertex is
given.

Findout: we have to find out the shortest path from the
Find out: we have to compute the shortest path weight set P.
Solution: following table shows the working of the bellman ford
algorithm.

TABLE 2
ITERATION OF BELLMEN-FORD ALGORITHMS

Iterations s.d/

s.p
a.d/
a.p

b.d/
b.p

c.d/
d.p

d.d/
d.p

Initialization

0/ - ∞/ - ∞/ - ∞/ - ∞/ -

1

0/ - 6/s 4/c 7/ s 2/a

2

0/ - 2/b 4/c 7/s 2/a

3

0/ - 2/b 4/c 7/s -2/a

4 0/ - 2/b 4/c 7/s -2/a

2.3 Floyd Warshall Algorithm

Floyd-Warshall algorithm is used to determine the shortest dis-
tance among the entire sets of nodes on agraph having +ve or
-ve weights on edges. A matrix of square length is given as its
input to the algorithm. The matrix specifies the distance of
each vertex without any intermediate nodes called the distance
or length matrix. This matrix containing the length in the ma-
trix if an edge exists among vertex a and b.At matrix diagonal
it contains zeros and If it has no edge among the ends a and b,
there is a place (a, b) containing infinity value. That matrix is
recalculated in each iteration of the algorithm[9].
For this, this keeps a record of the shortest distance among any
two nodes, by using a subsection of a whole set of nodes as
middle steps beside the path. A matrix, formed for the initial
iteration of the process, consists of paths between all nodes
that use a single (previously defined) intermediate node. It
contains distances applying two pre-defined intermediary
nodes. After All, the matrix employs “N” intermediary
nodes[10]. This method can be explained by applying the fol-
lowing recursive formula:
Dij

n= minimum (Dij
n-1, Dik

n-1 + Dkj
n-1) [11]

The algorithm runs and determining the shortest distance (a, b,
c) for each pair of (a, b) for, c = 1 and then c = 2, etc. This
procedure runs continuously till c = n, after which determines

the shortest distance for each (a, b) pairs by applying any of
the middle nodes. To retrieve short paths between all nodes,
you must make another matrix during the operation of the ma-
trix, this matrix is utilized to store the shortest distance.
If we have graph G, in which each node is labeled from 1 to n.
The shortest distances from vertex a to vertex b are represented
by Notation dab

c, which is as well goes over the c vertex. So, if
there is an edge among vertex a and b that will be equivalent
to dab

0, else it can be valued as infinity[11].
Though for some values of dab

c here we have two options: (a)
If the shortest distance from a to b does not exceed nodec the
dab

c value will be equivalent to dab
c1. (b) If the shortest distance

as of vertex a to b reaches from vertex so, firstly it reaches
from vertex a to c, and then from vertex c to b. so for that the
value of dab

c will be equivalent to dac
c-1+ dcb

c-1.To find the short-
est distance we have to calculate the least cost between them
this is represented by the following two statements:
Dab

0= the distance of edge among the nodes a and b
dab

c = min (dab
c-1, dac

c-1 + dcb
c-1)

2.3.1. Algorithm Procedure

Following is a detailed note of each step of the Floyd-war-
shall algorithm.

Inputs:
2. Graph G with vertices V and edges E.
3. Weight of each edge w (u, v).
4. A source node s Î G.V
Output: the shortest path weight solution set P from source s

node to all other nodes.
Algorithm:

Step 1: First we have to make two square matrices A and B. A
matrix store the distance and B store path, now, make iteration to
calculate the distance we have to modify the matrix from the
starting node to the intermediary point, then determine the short-
est distance among every two node so, obviously,
Step 2: After that, we have to modify the matrix by using the
second node as the intermediary point. Given that the shortest
distance from node a to node b through the first node is availa-
bleand also stores the path in the B matrix.
Step 3: Repeat step 2 till Nth nodes, and then we determine the
shortest distance among each vertex.

2.3.2 Detailed Example
Here is a simple example that shows the working of the Floyd
Warshall algorithm in detail.

Fig. 2. An Example of Bellman Ford Algorithm

Fig. 3. A Example of Floyd-Warshall Algorithm

 JOURNAL OF COMPUTATIONAL LEARNING STRATEGIES & PRACTICES, A02

10

Step1: initialization: (k=0)

Step2: iteration 1 (k=1) shorter paths from 3 → 2 and 3 → 4 are
found through vertex 1

Step3: iteration 2 (k=2) shorter paths from 1 → 3 and 4 → 3 are
found through vertex 2

Step4: iteration 3 (k=3) shorter paths from 2 → 1, 2 → 4, and 4
→ 1 are found through vertex 3

Step5: iteration 4 (k=4) shorter paths from 1 → 2 and 3 → 2 are
found through vertex 4

3 COMPARATIVE ANALYSIS OF THESE THREE
ALGORITHMS
3.1 Dijkstra’s Algorithm

3.1.1 Advantages:
Dijkstra’s algorithm is used to compute the result in the
single-pair, single-source/destination, and shortest path
problem. Dijkstra’s algorithm does not need that the dis-
tance_matrix represents a dense matrix, which makes the
algorithm work better on memory for sparse graphs. With
a large number of vertex, Dijkstra’s algorithm is superior
and more effective[12]. Moreover, Dijkstra’s algorithm
would create shorter time in minor and large graphs.
Dijkstra’s algorithm has lower time complexity as com-
pared to other shortest path problem algorithms and is in-
troduced with good extensibility.

3.1.2 Disadvantages:
Dijkstra's is the more efficient algorithms of single-source
shortest path problem but the major problem with this al-
gorithm is that it can’t handle the graphs having negative
weight edges[13].

3.1.3 Applications:
Dijkstra’s algorithm is the most efficient and much faster
single-source shortest path problem algorithm and is com-
monly used in real-time applications. Now a days, Dijks-
tra’s algorithm is most frequently applied in networking
areas, in GPS systems, and in 3D wireless sensors.

3.2 Bellman-Ford Algorithm
3.2.1 Advantages:
Bellman-Ford algorithm getsaresult in the SSP if the edges
having -ve weights and thatcan sensing a negative edges cycle
in the graph. The quality of the algorithm performs best while
the graph contains fewer amount of nodes, although Dijks-
tra’s algorithm can perform effectively where the graph is has
a larger number of nodes[13].

3.2.2 Disadvantages:
Based on the complexity of time, we conclude the Bellmen-
ford algorithm getsa longer time instead of Dijkstra’s algo-
rithm. For single-source shortest path problem, Bellman-Ford
is appliedbarely when the weights are negative on edges oth-
erwise Dijkstra’s algorithm is the best option.

SHAISTA SARWAR, LAIBA SHAHEEN: A SURVEY OF TRILOGY SHORTEST PATH ALGORITHMS

11

3.2.3 Applications:

Bellman-Ford algorithm is used in routing to find optimal routes
in a network [14].

3.3 Floyd WarshallAlgorithm

3.3.1 Advantages:
The Floyd Warshall algorithm assigns the shortest path among
each set of nodes by a graph examing algorithm. This algorithm
is quicker wheres the graph is densely connected but not in the
case of sparse graphs. In the Floyd-Warshall algorithm, there is
an improved memory performance than a small matrix execution
for a densely connected matrix calculation usually has a high per-
formance of floating points operation in memory. This algorithm
can solve the -ve weight problemhavingabroader range than
Dijkstra’s algorithm. It’s significantly desirable along with these
three algorithms. It is mostrelated to the shortest path problem
among entire point pairs.
longer time instead of Dijkstra’s algorithm. For single source
shortest path problem, Bellman-Ford is applied barely when the
weights are negative on edges otherwise Dijkstra’s algorithm is
the best option[15].

3.3.2 Disadvantages:
Though, that has a greater complexity of time than Dijkstra’s and
Bellman-Ford's Algorithm.

3.3.3 Applications:
This algorithm is used to handle several problems like computa-
tion of fast path finder networks, finding the path with maximum
flow between two vertices, and shortest path in directed graphs.

TABLE 3
COMPARISONS OF SHORTEST PATH ALGORITHMS

Factors Dijkstra’s Bellman-Ford Floyd War-
shall

Space
complex-
ity

O(V) O(V) O(V2)

Time
complex-
ity

O(V2) O(VE) O(V3)

Use con-
dition

Dense graph

Sparse graph
thoroughly re-
lated to the side

Dense graph
closely re-
lated to the
vertexes

Negative
weight
edges

No, can’t deal
with negative
edge values

Yes, can deal
with negative
edge values

Yes, can deal
with negative
weight edges

4 CONCLUSION
This paper performed a comparative examination in terms of
minimum path optimization between three algorithms. The three

comparable algorithms are used to determine which is best to dis-
cover the minimum distance between the two vertices. Our re-
search shows that the Dijkstra algorithm is the best option to
choose when the graph has positive weights and it solves the
same problem in less time as compared to Bell-man ford. Floyd
Warshall is suitable in the situation where the dense graph is
given and we have to computeall shortest pair’s pathand it is
more widely used in real-time applications. It essential to re-
called that if the input graph has a negative cycle then no shortest
path exists.

5 REFERENCES
[1] Li, Tianrui, Luole Qi, and Da Ruan. "An efficient algorithm for the

Single-Source Shortest Path Problem in graph theory." 2008 3rd
International Conference on Intelligent System and Knowledge
Engineering. Vol. 1. IEEE, 2008.

[2] Sadavare, A. B., and R. V. Kulkarni. "A review of application of
graph theory for network." International Journal of Computer Sci-
ence and Information Technologies 3.6 (2012): 5296-5300.

[3] Manjaiah, D. H. "A Study on Contrast and Comparison between
Bellman-Ford algorithm and Dijkstra’s algorithm."

[4] Johnson, Donald B. "A note on Dijkstra's shortest path algo-
rithm." Journal of the ACM (JACM) 20.3 (1973): 385-388.

[5] Zhao, Lingling, and Juan Zhao. "Comparison study of three short-
est path algorithm." 2017 International Conference on Computer
Technology, Electronics and Communication (ICCTEC). IEEE,
2017.

[6] Noto, Masato, and Hiroaki Sato. "A method for the shortest path
search by extended Dijkstra algorithm." Smc 2000 conference pro-
ceedings. 2000 ieee international conference on systems, man and
cybernetics.'cybernetics evolving to systems, humans, organiza-
tions, and their complex interactions'(cat. no. 0. Vol. 3. IEEE,
2000.

[7] Goldberg, Andrew, and Tomasz Radzik. A heuristic improvement
of the Bellman-Ford algorithm. STANFORD UNIV CA DEPT
OF COMPUTER SCIENCE, 1993.

[8] Manan, Abdul, and Syed Imran Ali Lakyari. "Single source short-
est path algorithm Dijkstra and Bellman-Ford Algorithms: A
Comparative study." International Journal of Computer Science
and Emerging Technologies 3.2 (2019): 25-28.

[9] Burfield, Chandler. "Floyd-warshall algorithm." Massachusetts In-
stitute of Technology (2013).

[10] Hougardy, Stefan. "The Floyd–Warshall algorithm on graphs with
negative cycles." Information Processing Letters 110.8-9 (2010):
279-281.

[11] Magzhan, Kairanbay, and Hajar Mat Jani. "A review and evalua-
tions of shortest path algorithms." International journal of scien-
tific & technology research 2.6 (2013): 99-104.

[12] AbuSalim, Samah WG, et al. "Comparative Analysis between
Dijkstra and Bellman-Ford Algorithms in Shortest Path Optimiza-
tion." IOP ConferenceSeries: Materials Science and Engineering.
Vol. 917. No. 1. IOP Publishing, 2020.

[13] Xiao, Ji-Xian, and Fang-Ling Lu. "An improvement of the shortest
path algorithm based on Dijkstra algorithm." 2010 The 2nd Inter-
national Conference on Computer and Automation Engineering
(ICCAE). Vol. 2. IEEE, 2011.

 JOURNAL OF COMPUTATIONAL LEARNING STRATEGIES & PRACTICES, A02

12

[14] Wang, Xiao Zhu. "The Comparison of Three Algorithms in Short-
est Path Issue." Journal of Physics: Conference Series. Vol. 1087.
No. 2. IOP Publishing, 2018.

[15] Mukhlif, Fadhil, and Abdu Saif. "_Comparative Study On Bell-
man-Ford AndDijkstra Algorithms." Proc. Of International Con-
ference on Communication, Electrical and Computer Networks
(ICCECN 2020) Kuala Lumpur, Malaysia. 2020.

