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A Survey of Trilogy Shortest Path Algorithms 
Shaista Sarwar, Laiba Shaheen 

Abstract—Shortest path problem is one of the most classical problem in graph theory, aiming to discover the shortest path between two nodes in a 
graph. In this problem, we have to find the minimum-cost tracks or shortest paths between the starting node and final destination in a given graph.This-
work gives a brief introduction of the most famous algorithms of the shortest path problem i.e. Dijkstra’s, Bellman-Ford, and Floyd Warshall algo-
rithm. A comparative analysis of these algorithms is performed based on their advantages, disadvantages, and efficiency, and application areas.  
 
Index Terms—Dijkstra; Shortest path; Floyd; Bellman 
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1 INTRODUCTION 
RAPH  is made out of nodes and these nodes are connected 
by edges and each of these edges has a number next to them 

and that number is a weight, the bigger the weight is the more 
expensive it is to get from one node to the other node that the 
edge connects to[1]. In graph theory, there is a problem to dis-
cover the least expensive path between nodes which is called the 
shortest path problem. In this problem, we have tofind the mini-
mum-cost tracks or shortest paths between the starting node and 
final destination in a given graph[2]. Several algorithms exist for 
the shortest path problem but here we discuss only the most pop-
ular and competitive algorithms of the shortest path problem, and 
which are as follow: 

1. Dijkstra’s Algorithm 
2. Bellman-Ford Algorithm 
3. Floyd Warshall Algorithm 

In this survey, our research contribution can be summarized as 
follows:  

• Critical review on each algoritm by sharing its procedure, 
main features , applications and limitations.  
• Comparisons of the existing shortest path algorithms  for bet-
ter understanding. 
• And describing which algorithm work best in which scenario. 
• Running the algorithms  on different graphs and view results. 
 

The rest of the paper is divided into three main sections. Section 
2 discusses the basic concept related to the three classical algo-
rithm. Section 3 presents the Comparative analysis of these three 
algorithms. In the end, section 4 we discuss the conclusion.  

2 THREE CLASSICAL  ALGORITHMS 
2.1 Dijkstra’s Algorithm 
Edsger Dijkstra was a Dutch computer scientist who presents 
Dijkstraan algorithm in 1959, in which he finds the mini-
mumroute from the source node to all other nodes in a given 
graph[3]. He develops Dijkstra’s algorithm to address one of 
the optimization problems i.e. single-source shortest path 

problem. Dijkstra algorithm work on the directed weighted 
graph in which the values of the edges are always positive[4]. 
The conception of the Dijkstra algorithm: let G be a directed, 
weighted graph in which there is the number of nodes v Î 
G.V and these nodes are connected by edges (u, v) Î G.E and 
each of these edges have a number next to them and that 
number is a weight, the bigger the weight is 
more expensive it is to get from one node to the other node 
that the edge connects to. 
In the Dijkstra algorithm, we manage two sets of vertices i.e. 
Q and P.P contains all visited nodes. Atthestart, Q contains 
all vertices and P is empty.The set Q contains all non-visited 
vertices/nodes and the set In Dijkstra’s algorithm, we main-
tain two attributes for each vertex i.e. v.d and v.p. v.d shows 
the shortest path estimate from the source s to vertex v and 
v.p gives the predecessor of v. At each step, the smallest entry 
from set Q is removed and added to our visited node-set P.  
Whenever the node is removed from Q and added in P, then 
we compute d(u, v) that node with their adjacent nodes which 
are called as neighbors of that selected node. For all vertices 
d(u, v) are computed and algorithm stop when allnodes in the 
graph are visited[5,6]. 

2.1.1 Algorithm Procedure  
Following is a detailed note of each step of Dijkstra’salgo-

rithm. 
Inputs:  
1. Graph G with vertices V and edges E. 
2. Weight of each edge w (u,v). 
3. A source node s Î G.V 
Output: the shortest path weight solution set P from source s 

node to all other nodes. 
  Algorithm: 

Step 1: In step 1, we initialize all vertices in a given graph by 
setting v.d= ∞ and v.p = NIL. For sources s we set s.d= 0. 

Step 2: we initialize two sets i.e. P and Q for visited and non-
visited vertices. At the start, P is empty and inserts all G.V 
vertices in Q. 

Step 3: now we iterate the following points until Q becomes 
empty. 
a. First, we extract a vertex v from Q whose v.d is min-

imum among all of them. And add this vertex in set 
P. 

b. Let’s name the extracted vertex as curr_vertex (cur-
rent vertex). Now check the neighbors of current 

G 
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vertex (neighbors also called adjacent nodes of cur-
rent vertex) and name it as neighbor_vertex and for 
each neighbor vertex check if neighbor_ver-
tex.d>curr_vertex.d + w (curr_vertex, neighbor_ver-
tex) then set the neighbor_vertex.d = curr_vertex.d 
+ w (curr_vertex, neighbor_vertex) and neigh-
bor_vertex.p = curr_vertex. 
Compute shorted path estimate and predecessor for 
each neighbor of the current vertex. 

c. Repeat a and b until all vertices are visited and when Q = 
F the algorithm stops. 

The algorithm return solution set P which provides us the short-
est path weights from source to every single vertex in a 
given graph.  

 

2.1.2 Detailed Example 
Here is a simple example that shows the working of Dijkstra’s 
algorithm in detail. 
Input: a directed graph with non-negative weights and a source 
vertex is given. 

 
 

 

 
 
 
 
 
 
 
 

 
Find out: we have tocompute the shortest path weight set P. 
Solution: following table shows the working of the Dijkstra al-
gorithm. 

TABLE 1 
ITERATION OF DIJKSTRA  ALGORITHM 

 
Itera-
tions 

Visited 
Nodes 

s.d
/ 
s.p 

a.d/ 
a.p 

b.d/ 
b.p 

c.d/ 
d.p 

d.d/ 
d.p 

Initialization 0/ - ∞/ - ∞/ - ∞/ -  ∞/ - 

1 {s} 0/ - 6/s ∞/ - 7/s ∞/ - 

2 {s,a} 0/ 
- 

6/s 11/a 7/s 8/a 

3 {s,a,c}  0/ 
- 

6/s 11/a 7/s 8/a 

4 {s,a,c,d} 0/ - 6/s 11/a 7/s 8/a 

5 {s,a,c,d,b} 0/ - 6/s 11/a 7/s 8/a 

 

2.2 Bellman-Ford Algorithm 
To get a short distance from a starting node to all destinations in 
the graph that has negative weights we are using a bellmen-ford 
algorithm. We use the Bellmen ford algorithm to compute the -
ve cycle exists in the graph or not and if a graph having a -ve-
weight cycle then it will make various from the initial point to 
the endpoint, in which every cycle will decrease the rate of short-
est distance. Because of that factor, let us assume that our graph 
has no -ve weight cycles the array dist[] will maintain a minimum 
length starting the first position to the other nodes. This algorithm 
contains many sections, in which every step wants to decrease 
the cost from the entire edges by substituting dist[n] the state-
ment dist[m] + e; m and n are the graph nodes, and e will be the 
related edge that connects both nodes. Graph required an n - 1 
sectionto compute the value of all the shortest distances, but for 
those inaccessible graph values, the amount to the array will be 
assigned to infinity[7]. 
A boolean value is returned by the algorithm that specifying that 
either there is a -ve weight cycle present that is retrieved by-
source or not. If the graph has no cycle then the shortest distance 
is returned by the algorithm, but if the graph contains a -ve cycle 
then the algorithm does not return the shortest path. The solution 
is their Bellman-Ford algorithm can perceive -ve cycles and de-
fine that they exist. These algorithms return esteem that the neg-
ative cycle is available or not and return the shortest-path. This 
algorithm finds the shortest path in a bottom-up manner. The al-
gorithm returns true if the graph does not consist of any negative 
weight cycles accessible to the source. 
The elementary composition of bellman for dislike Dijkstra's al-
gorithm, althoughin its place of greedy choosing the minimum-
weight vertex not still handled to relaxing, it merely relaxes en-
tire edges and performs this |N| - 1 time, where |N| represents the 
number of nodes in the graph[8]. Repetition allows small gaps to 
spread precisely across the entire graph, because, in the lack of   
-ve cycles, a very short path visits every node at a time. 
 
2.2.1. Algorithm Procedure 

Following is a detailed note on each step of the bellman-ford 
algorithm. 

Inputs:  
   1.    Graph G with vertices V and edges E. 

2. Weight of each edge w (u,v). 
3. A source node s Î G.V 

Output: the shortest path weight solution set P from source s 
to all other nodes. 

 
Algorithm: 
Step 1: In this step, we initialize all vertices in a given graph 
by setting v.d= ∞ and v.p = NIL. For sources s we set s.d= 0. 
Step 2: now we start iterating the vertices and inside this iter-
ation also iterate each edge by their weight by checking that 
either there is less cost to reach from one node to another if we 
find the minimum cost then we update the node with this cost. 
Step 3: Now after updating nodes with their minimum cost we 
again make an iteration to check either there is a -ve weight 
cycle exist in the graph or not if we find -ve cycle the algorithm 
returns False otherwise it returns True.    
 
 

Fig. 1. An Example of Dijkstra Algorithm 
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2.2.2 Detailed Example 
Input: a graph with non-negative weights and a source vertex is 
given. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Findout: we have to find out the shortest path from the  
Find out: we have to compute the shortest path weight set P. 
Solution: following table shows the working of the bellman ford 
algorithm. 
 

TABLE 2 
ITERATION OF BELLMEN-FORD ALGORITHMS 

 
Iterations s.d/ 

s.p 
a.d/ 
a.p 

b.d/ 
b.p 

c.d/ 
d.p 

d.d/ 
d.p 

Initialization 
 

0/ - ∞/ - ∞/ - ∞/ - ∞/ - 

1 
 

0/ - 6/s 4/c 7/ s 2/a 

2 
 

0/ - 2/b 4/c 7/s 2/a 

3 
 

0/ - 2/b 4/c 7/s -2/a 

4 0/ - 2/b 4/c 7/s -2/a 
 
2.3 Floyd Warshall Algorithm 

Floyd-Warshall algorithm is used to determine the shortest dis-
tance among the entire sets of nodes on agraph having +ve or 
-ve weights on edges. A matrix of square length is given as its 
input to the algorithm. The matrix specifies the distance of 
each vertex without any intermediate nodes called the distance 
or length matrix. This matrix containing the length in the ma-
trix if an edge exists among vertex a and b.At matrix diagonal 
it contains zeros and If it has no edge among the ends a and b, 
there is a place (a, b) containing infinity value. That matrix is 
recalculated in each iteration of the algorithm[9]. 
For this, this keeps a record of the shortest distance among any 
two nodes, by using a subsection of a whole set of nodes as 
middle steps beside the path. A matrix, formed for the initial 
iteration of the process, consists of paths between all nodes 
that use a single (previously defined) intermediate node. It 
contains distances applying two pre-defined intermediary 
nodes. After All, the matrix employs “N” intermediary 
nodes[10]. This method can be explained by applying the fol-
lowing recursive formula: 
Dij

n= minimum (Dij
n-1, Dik

n-1 + Dkj
n-1) [11] 

The algorithm runs and determining the shortest distance (a, b, 
c) for each pair of (a, b) for, c = 1 and then c = 2, etc. This 
procedure runs continuously till c = n, after which determines 

the shortest distance for each (a, b) pairs by applying any of 
the middle nodes. To retrieve short paths between all nodes, 
you must make another matrix during the operation of the ma-
trix, this matrix is utilized to store the shortest distance. 
If we have graph G, in which each node is labeled from 1 to n. 
The shortest distances from vertex a to vertex b are represented 
by Notation dab

c, which is as well goes over the c vertex. So, if 
there is an edge among vertex a  and  b that will be equivalent 
to dab

0, else it can be valued as infinity[11]. 
Though for some values of dab

c   here we have two options: (a) 
If the shortest distance from a to b does not exceed nodec the 
dab

c value will be equivalent to dab
c1. (b) If the shortest distance 

as of vertex a to b  reaches from vertex so, firstly it reaches 
from vertex a to c, and then from vertex c to b. so for that the 
value of dab

c will be equivalent to dac
c-1+ dcb

c-1.To find the short-
est distance we have to calculate the least cost between them 
this is represented by the following two statements: 
Dab

0= the distance of edge among the nodes a and b 
dab

c = min (dab
c-1, dac

c-1 + dcb
c-1) 

 
2.3.1. Algorithm Procedure 

Following is a detailed note of each step of the Floyd-war-
shall algorithm. 

Inputs:  
2. Graph G with vertices V and edges E. 
3. Weight of each edge w (u, v). 
4. A source node s Î G.V 
Output: the shortest path weight solution set P from source s 

node to all other nodes. 
Algorithm: 

Step 1: First we have to make two square matrices A and B. A 
matrix store the distance and B store path, now, make iteration to 
calculate the distance we have to modify the matrix from the 
starting node to the intermediary point, then determine the short-
est distance among every two node so, obviously, 
Step 2: After that, we have to modify the matrix by using the 
second node as the intermediary point. Given that the shortest 
distance from node a to node b through the first node is availa-
bleand also stores the path in the B matrix. 
Step 3: Repeat step 2 till Nth nodes, and then we determine the 
shortest distance among each vertex. 
 

2.3.2 Detailed Example 
Here is a simple example that shows the working of the Floyd 
Warshall algorithm in detail. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. An Example of Bellman Ford Algorithm 

Fig. 3. A Example of Floyd-Warshall Algorithm 
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Step1: initialization: (k=0) 
 
 
 
 
 
 
 
 
 
 
Step2: iteration 1 (k=1) shorter paths from 3 → 2 and 3 → 4 are 
found through vertex 1 
 
 
 
 
 
 
 
 
 
 
 
 
Step3: iteration 2 (k=2) shorter paths from 1 → 3 and 4 → 3 are 
found through vertex 2 
 
 
 
 
 
 
 
 
 
 
 
Step4: iteration 3 (k=3) shorter paths from 2 → 1, 2 → 4, and 4 
→ 1 are found through vertex 3 
 
 
 
 
 
 
 
 
 
 
Step5: iteration 4 (k=4) shorter paths from 1 → 2 and 3 → 2 are 
found through vertex 4 

 

 
 

3 COMPARATIVE ANALYSIS OF THESE THREE 
ALGORITHMS  
3.1 Dijkstra’s Algorithm 

3.1.1 Advantages: 
Dijkstra’s algorithm is used to compute the result in the 
single-pair, single-source/destination, and shortest path 
problem. Dijkstra’s algorithm does not need that the dis-
tance_matrix represents a dense matrix, which makes the 
algorithm work better on memory for sparse graphs. With 
a large number of vertex, Dijkstra’s algorithm is superior 
and more effective[12]. Moreover, Dijkstra’s algorithm 
would create shorter time in minor and large graphs. 
Dijkstra’s algorithm has lower time complexity as com-
pared to other shortest path problem algorithms and is in-
troduced with good extensibility. 
 

3.1.2 Disadvantages: 
Dijkstra's is the more efficient algorithms of single-source 
shortest path problem but the major problem with this al-
gorithm is that it can’t handle the graphs having negative 
weight edges[13]. 
 

3.1.3 Applications: 
Dijkstra’s algorithm is the most efficient and much faster 
single-source shortest path problem algorithm and is com-
monly used in real-time applications. Now a days, Dijks-
tra’s algorithm is most frequently applied in networking 
areas, in GPS systems, and in 3D wireless sensors. 
 

3.2 Bellman-Ford Algorithm 
3.2.1 Advantages: 
Bellman-Ford algorithm getsaresult in the SSP if the edges 
having -ve weights and thatcan sensing a negative edges cycle 
in the graph. The quality of the algorithm performs best while 
the graph contains fewer amount of nodes, although Dijks-
tra’s algorithm can perform effectively where the graph is has 
a larger number of nodes[13]. 
 

3.2.2 Disadvantages: 
Based on the complexity of time, we conclude the Bellmen-
ford algorithm getsa longer time instead of Dijkstra’s algo-
rithm. For single-source shortest path problem, Bellman-Ford 
is appliedbarely when the weights are negative on edges oth-
erwise Dijkstra’s algorithm is the best option.  
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3.2.3   Applications:

Bellman-Ford algorithm is used in routing to find optimal routes 
in a network [14]. 
 
3.3 Floyd WarshallAlgorithm 

3.3.1 Advantages: 
The Floyd Warshall algorithm assigns the shortest path among 
each set of nodes by a graph examing algorithm. This algorithm 
is quicker wheres the graph is densely connected but not in the 
case of sparse graphs. In the Floyd-Warshall algorithm, there is 
an improved memory performance than a small matrix execution 
for a densely connected matrix calculation usually has a high per-
formance of floating points operation in memory. This algorithm 
can solve the -ve weight problemhavingabroader range than 
Dijkstra’s algorithm. It’s significantly desirable along with these 
three algorithms. It is mostrelated to the shortest path problem 
among entire point pairs.  
longer time instead of Dijkstra’s algorithm. For single source 
shortest path problem, Bellman-Ford is applied barely when the 
weights are negative on edges otherwise Dijkstra’s algorithm is 
the best option[15].  
 
3.3.2 Disadvantages: 
Though, that has a greater complexity of time than Dijkstra’s and 
Bellman-Ford's Algorithm. 
 
3.3.3 Applications: 
This algorithm is used to handle several problems like computa-
tion of fast path finder networks, finding the path with maximum 
flow between two vertices, and shortest path in directed graphs. 

TABLE 3 
COMPARISONS OF SHORTEST PATH ALGORITHMS 

Factors Dijkstra’s Bellman-Ford Floyd War-
shall 

Space 
complex-
ity 
 

O(V) O(V) O(V2) 

Time 
complex-
ity 
 

O(V2) O(VE) O(V3) 

Use con-
dition 

Dense graph  
 

Sparse graph 
thoroughly re-
lated to the side 

Dense graph 
closely re-
lated to the 
vertexes 
 

Negative 
weight 
edges 

No, can’t deal 
with negative  
edge values 

Yes, can deal 
with negative 
edge values 

Yes, can deal 
with negative 
weight edges 

4  CONCLUSION 
This paper performed a comparative examination in terms of 
minimum path optimization between three algorithms. The three 

comparable algorithms are used to determine which is best to dis-
cover the minimum distance between the two vertices. Our re-
search shows that the Dijkstra algorithm is the best option to 
choose when the graph has positive weights and it solves the 
same problem in less time as compared to Bell-man ford. Floyd 
Warshall is suitable in the situation where the dense graph is 
given and we have to computeall shortest pair’s pathand it is 
more widely used in real-time applications. It essential to re-
called that if the input graph has a negative cycle then no shortest 
path exists. 
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