
JOURNAL OF COMPUTATIONAL LEARNING STRATEGIES & PRACTICES, A05 31

Sequential Johnson’s APSP Algorithm on GPU
Anila Batool, Muntazir Mehdi

Abstract— A quite ordinary issue while processing graphs is to find the shortest distance from one node to all the other nodes. It is called
all-pairs shortest path. The applications of finding shortest paths are several including Digital Mapping, Social Networking, Telephone
Networks, IP Routing, Fighting Agenda, Robotic Path and many more. Although a lot of work has already been carried out in this aspect but
it has been observed that it is quite difficult to exquisitely process graphs which contain a very larger number of nodes. This paper aims to
provide a pertinent solution to this problem by proposing three different versions of Johnson’s shortest path solution in parallel architecture
over Graphic Processing Unit which resolves APSP problem. As compared to processing extensively large graphs on CPU, proposed
architecture will provide a 4.5 time efficient solution for APSP problem.

Index Terms— All-Pair Shortest Path, Compute Unified Device Architecture (CUDA), Graphical Processing Unit (GPU), Johnson’s
Algorithm, Parallel Processing.

—————————— u ——————————

1 INTRODUCTION

inding the shortest path is one of the most important topics
of graph processing. Three major solutions to APSP include

Dijkstra’s algorithm [1], Floyd-Warshall algorithm [2] and
Johnson’s Algorithm [3]. Dijkstra’s algorithm finds shortest
path for a single node by updating the relevant weights of the
adjacent nodes. Time complexity of Dijkstra’s algorithm is O
(V2) where V represents the number of elements in the graph.
Another upgraded version [4] of the algorithm utilizes priority
queue which as a result reduces the time complexity to O (Vlog
(V)). When applied on each node separately, Dijkstra’s algo-
rithm can be used to solve APSP problem. Time complexity of
applying the Dijkstra’s algorithm on each node of the graph is
O (V2log (V)).
However, Dijkstra’s algorithm lacks the ability to work with
negative weights. On the contrary, Floyd-Warshall algorithm
can be used to handle positive as well as negative weights. With
time complexity O (V3), Floyd-Warshall algorithm calculates
shortest path between two nodes by comparing total number of
possible paths between the nodes. The third solution is John-
son’s algorithm [5] which resolves the problem by using Bell-
man-Ford [6] algorithm to remove negative weights then uses
Dijkstra’s algorithm on each separate node to compute shortest
paths between all the nodes in a graph. The time complexity of
Johnson’s algorithm is O (VE + V2log (V)) where V represents
nodes and E represents edges in a graph.
Feasible solution to the problem cannot be obtained by sequen-
tial processing of the graphs as we can observe that these algo-
rithms are computationally costly for graphs with very large
number of nodes and vertices. To resolve this problem we sug-
gest a parallel computing architecture which will speed the
overall process of finding all-pair-shortest-path about 4.5 times.
This paper will illustrate the idea of using GPUs for parallel
computing which provide high computational power at a lower
cost as compared to other parallel computing architectures such
as CRAY supercomputers. We tend to provide three different
parallel computing architectures of Johnson’s algorithm on
Graphic Processing Units. In the end of the paper, we will pro-
vide a comparative report which will compare the three pro-

posed solutions in terms of performance and will also describe
the pros and cons of using each.

2 RELATED WORK
The use of GPUs for general purposes has increased dramatical-
ly in the last decade. Harish [7] used V2 threading for parallel
implementation of Floyd-Warshall. Agarwal [8] used two-flag
approach over Bellman-Ford algorithm and reduced the execu-
tion time by finding the edges which should be dropped in the
upcoming iteration. Meyer [9] introduced delta stepping in or-
der to achieve parallel implementation of Dijkstra’s algorithm.
Bader [10] used CRAY supercomputers for parallel implemen-
tation of shortest path problem but the cost of the hardware was
quite high. Singh [11] used edge-based and node-based ap-
proach and implemented modified Dijkstra’s algorithm in paral-
lel computing architecture.
We took the idea of edge classification and queue method from
Busato [12]. We utilized Crauser [13] idea of parallel Dijkstra’s
algorithm with frontier flag and queue structure to avert branch
divergence and keep track of nodes to be operated.

3 CUDA OVERVIEW
GPU provides Single Program Multiple Data Model which
allows executing similar set of commands on different data
items in parallel. In this technique a lot of light weight thread
used by General Processing Unit are mapped into multiple
cores of General Processing Unit. To implement this, our Gen-
eral Processing Unit should be programmed into popular
framework for programming CUDA [14] that is supported by
NVIDIA [15]. There are multiple Streaming Multiprocessor in
the NVIDIA General Processing Unit on chip L2 cache. These
Streaming Multiprocessor are consists of a lot of independent
processing units. Shared Memory is a very fast and private
memory this is accessible to all Streaming Multiprocessors in
the system. The programmer using CUDA writes a set of com-
mands using device kernel and the General Processing Unit
executed all these commands. One block consists of multiple
number of threads, and we assign this thread to single core of

Volume 1, Issue I © 2021 JCLSP Published by the CLSP

F

————————————————
• Anila Batool, Department of Computer Science, Govt Degree College of
Special Education, Sargodha, Pakistan. E-mail: sye-
danaqvi.1472@gmail.com.
• Muntazir Mehdi, Department of Computer Science, Superior Group of
Colleges, Mianwali, Pakistan. E-mail: naqviofficial5@gmail.com.

32 ANILA BATOOL, MUNTAZIR MEHDI: SEQUENTIAL JOHNSON’S APSP ALGORITHM ON GPU

General Processing Unit. Similarly a whole block of thread can
also be assigned to a Streaming Multiprocessor. By using this
approach each thread or even each block of thread is assigned
by a unique id so that these thread and block of threads can be
identified by Streaming Multiprocessor.

4 SEQUENCIAL JOHNSON’S ALGORITHM
Johnson Algorithm is the outcome of three different phases.
First, an extra node is added to the graph G and this node is
called q. This node is connected to all other nodes with zero
weighted edges. After this, using Bellman-Ford algorithm [6]
the shortest path from this newly created node q to all other
nodes of graph is evaluated. After that, the cost of all the edges
in the graph is re-calculated by using the outcome of the initial
phase. The last step includes the process of calculating the dis-
tance between each node present in the graph with the help of
re-weighted edges obtained in the previous step.
Finally, the adjacency list is formed in which we store our
graph. By using adjacency lists the graph G (E, V) will be dis-
played as: array is used to represent the nodes/vertices and
named as Va, second array Ea is used to store the edges directly
associated with the node in progress. Every new insertion in the
array point to the vertex in the corresponding array. So with the
help of this representation when we are trying to process the
nodes in parallel we can easily access the adjacencies of a node
in the graph.

5 BELLMAN-FORD SINGLE SOURCE SHORTEST
PATH ALGORITHM

According to Bellman’s solution the cost from starting node is
initialized to zero and the cost from all other nodes is initialized
to infinity. In the next step, each edge is passed through a relax-
ing operation. Relax operation is performed equal to the total
number of vertices in the graph.
Modified version of Bellman-Ford algorithm [16] includes two
modifications. The modified version suggests the idea of keep-
ing track of the vertices which are being processed by creating a
separate storing structure. It is accomplished with the use of
queue structure and by using lesser number of relaxing opera-
tions which results in a decrease in the execution time. The
second advancement is to perform edge categorization. The
edges are categorized into 4 separate classes. It results in a de-
crease in the number of relaxing operations. Edge classification
categories are following:
• Self-revolving edge category: those edges whose all sides

are connected to the similar nodes are categorized into self-
revolving edge category. These edges are not relaxed.

• Initial edge category: It is the class to represent the edges
connected to the source point. Relaxing operation is per-
formed for this type by updating the value of initial nodes
directly.

• Incoming edge category: Edges which are meant to be
visited once because these have only 1 incoming edge are

categorized into this category and there is no need of relax-
ation these edges.

• Outgoing edge category: The category keeps track of
those edges whose have no further outgoing edge. Due to
this reason, we overlook them while the algorithm is run-
ning. However, their cost is added at time when the algo-
rithm stops.

Fig. 1. Upgraded Bellman’s algorithm. It shows the pseudo-code for modi-
fied Bellman-Ford algorithm.

5.1 Reweighting

The results of the first step are utilized in the process of edges’
weight updating. Weight updation for an edge which starts from
x and ends at y with z weight is modified as following.
z = z + h (x) – h (y)
The function h (.) is used to calculate the shortest path between
two given vertices. In this step negative weighted graphs are
converted into non-negative weighted graphs which enables us
to calculate the shortest paths between all the edges present in
the graph.

6 DIJKSTRA’S SINGLE SOURCE SHORTEST PATH
ALGORITHM

The process starts by assigning 0 distance to the source and
infinity to all other. After that, two sets visited and unvisited are
created. Initially it marks the source node as visited. After that,
it performs relax operation for all the neighboring nodes in the
unvisited set. It adds the node to the visited set as all of its
neighboring nodes are done. Then new node is chosen which is
not processed yet and the similar operation is repeated for that
node. The algorithm completes when the unvisited set become
empty. Figure 2 shows the working of generic Dijkstra’s algo-
rithm.

JOURNAL OF COMPUTATIONAL LEARNING STRATEGIES & PRACTICES, A05 33

7 PARALLEL IMPLEMENTATION SOLUTION
The paper presents three diverse implementations of Johnson’s
algorithm. These solutions differ in the way in which to keep
record of the frontier nodes at the time when Dijkstra’s algo-
rithm is functional. First method version we propose uses a
separate array to store a Boolean value which points out if a
node is in frontier or not. The second method is called Q-based
which puts the frontier node inside the queue with the help of
atomic operation. The last method is called prefix-based which
used prefix sum to put the frontier node into the queue. Initial
two steps in each of these three versions are the same.

7.1 Parallel Implementation for Bellman-Ford

Algorithm
Parallel Bellman-Ford algorithm makes it possible to process
each single edge independent of the other edges present in the
graph. A unique thread number is allocated to each thread are
all the threads which are then synchronized before the next iter-
ation. Figure 3 shows the main kernel of Bellman-Ford algo-
rithm. As each thread starts, it processes the vertex assigned to
it. The node weight array corresponding to the vertex is initial-
ized after which all vertices except the first one are terminated.
The main algorithm is controlled by the first thread. It initiates
by adding the functional coding instructions inside a queue.
After that, relax operation is performed for each individual node
which is shown in the figure 5. The second kernel which is the
child of the main kernel concurrently takes the nodes from
queue. Then it relaxes the nodes extracted from the queue and
puts the updated nodes in a separate queue. Then the queues are
exchanged by the kernel until the time queue becomes empty.
The in-queue and update operations are defined as atomic as a
situation can occur in which more than one threads are trying to
insert values inside the queue at the same time.

Fig. 3. The Working of Bellman’s Algorithm

7.2 Reweighting of Bellman Ford Algorithm
Previous step enabled us to simultaneously process nodes in the
kernel with the help of Maxwell architecture. As a result, each
edge cost is updated independently. As we already mentioned
that each nodes is carried out by a separate thread. Each thread
used Bellman-Ford algorithm to calculate node weights and
reassign the cost to each of the edge going out of that particular
node. Figure 4 shows the formula to calculate the cost of each
edge which is going away from a particular node.

Fig. 4. Reweighting Kernel

7.3 Parallel Implementation for Dijkstra’s Algorithm
This section describes the parallel implementation of Dijkstra’s
algorithm. However, unlike Bellman-Ford algorithm the paral-
lel implementation of Dijkstra’s algorithm is quite difficult due
to the sequential structure of the algorithm. Various approaches
can be used to parallelize the algorithm among which one is
parallelization of inner operations of the algorithm. Dijkstra’s
algorithm selects a node to calculate new distance values at its
outer loop. The algorithm uses inner operations to update label
of the nodes by relaxing out-going edges. We aim to parallelize
the algorithm by providing a mechanism to choose the vertices
which we process and update independently with no harm being
done to the accuracy of the outcome.
At every cycle, the job is to identify the vertices which should
be placed inside the group of frontier nodes. After that relaxing
task can be performed for the other nodes. Crauser [13] in his
paper provided an algorithm that outputs the frontier nodes with
larger heuristic distances. Arranz [18] suggested a better and
modified version of the algorithm provided by Crauser. In Ar-
ranz algorithm, the lowest edge cost is calculated for all out-

Fig. 2. Pseudo Code for Dijkstra's Algorithm.

34 ANILA BATOOL, MUNTAZIR MEHDI: SEQUENTIAL JOHNSON’S APSP ALGORITHM ON GPU

going edges. After that, a threshold value is calculated from the
unsettled nodes processed in the first step. As a result, it enables
us to put each node whose weight is larger than the threshold
into frontier set. Advance reduced V3 method of CUDA is
loaded in the kernel as a minimum function.
The only issue with this implementation is branch divergence.
Branch divergence problem occurs when the kernel have to
group up threads from various wraps but also have to branch
the same target inside a new and complete tab. The method of
frontier propagation is used by using queue as it is used in the
Bellman-Ford algorithm to prevent branch divergence. Howev-
er implementing queue in GPU is considerably different from
implanting queue in CPU. In order to productively configure
queue in Graphics Processing Unit, two separate tactics are
used: prefix-based and Q-based.
In Q-based approach the frontier flag of the initial node is
placed inside queue. The method for relaxing and updating ker-
nel using queue based approach for parallel Dijkstra’s algorithm
is shown in the figure 5. The cost of modifying the algorithm in
terms of flag-based approach is the cost of the total sum of
atomic operations at the time when nodes are being inserted
inside the queue.

Fig. 5. Q-based parallel Dijkstra relax operations.

Fig. 6. Pseudo kernel for updating queue of Q-based parallel Dijkstra.

Figure 6 shows the pseudo kernel to put frontier flag of the of
the source node inside a queue data structure. The use of
queue in parallel Dijkstra enables us to prevent branch
divergence notably. However, to prevent race conditions
threads are arranged in a sequential manner while updat-
ing the queue.

7.4 Prefix Based Dijkstra’s Algorithm
Another approach we used is pre-fix based which involves the
addition of elements in the queue by index numbers which are
calculated at the beginning of each iteration. As a result, the

cost of atomic operations is eliminated at the time of filling the
queue as the index numbers are already defined that are associ-
ated with each element meant to be placed inside the queue.
Nevertheless, it results in another computational cost of finding
of prefix sum. The kernel for updating prefix-based architecture
is presented in the figure 7. While the same relax kernel which
we used in the Q-based approach in figure 5 can be used in this
approach as well.

Fig. 7. Pseudo kernel for updating prefix based Dijkstra

In order to implement single source Dijkstra’s algorithm for
APSP problems, the same algorithm is applied to each node in
the graph as a result the single source Dijkstra’s algorithm can
be extended to APSP parallel algorithm.

8 EXPEREMENTAL SETUP AND RESULT
We conducted experiments on Microsoft Windows 8 office 64-
bit OS with Intel Core i5-3470 Central Processing Unit @3.2
Gigahertz and 12 GB DDR3 Random Access Memory. The
Graphic Processing Unit (GPU) we used for testing is NVIDIA
GeForce GTX 1050 2GB. We used 8 different graphs where
each graph size is different from the other.
In this project, we made comparative analysis of four different
versions of Johnson’s APSP in terms of execution efficiency.
Following is the list of versions which we used in this compari-
son report.

• Sequential Johnson’s APSP
• Flag-Based version
• Queue-based version
• Prefix-based version

In addition to this, we compared speed of rate of these versions
which is plotted on Figure 8.
It has been noticed that the speed-up rate of Q-based approach
is faster as compared to flag-based approach for the graphs
which were used in the testing process. The obvious reason for
this is that the cost of branch divergence is far greater as com-
pared to the cost of atomic operations which are used in the
flag-based method. On the contrary, the last method which is
proven more efficient theoretically performed badly as com-
pared to the Q-based and flag-based method in terms of speed-
up rate. This is due to the reason that our input graph sizes were
smaller while the prefix-based approach benefits more as the
size of the graph becomes larger and larger. The reason for
which we could not input very large graphs is the memory con-
straints of our GPU as APSP problems consumes a very large
amount of memory.
We can observe from figure 9 that as the size of graphs be-
comes larger and larger, the advantage of using parallel GPU

JOURNAL OF COMPUTATIONAL LEARNING STRATEGIES & PRACTICES, A05 35

implementation keeps increasing. Until the number of edges
about fifteen thousand, no considerable advantage is observed.
However as the number of edges increase more than that, the
execution time to process each node in the graph starts to de-
crease.

Fig. 8. Execution times on multiple graphs.

Fig. 9. Speed-up rates on multiple graphs.

9 CONCLUSIONS AND DISCUSSIONS
We proposed 3 diverse versions of Johnson’s APSP algorithm
on GPU to efficiently find shortest path for all the nodes present
in a graph. The results indicates that atomic operations affect
the performance of the proposed solution. However, this ap-
proach is still faster as compared to flag-based version because
of branch divergence problem. Nevertheless, prefix-based ap-
proach can perform better if the size of the input is increased
substantially.
Another advantage of the proposed solution is that it can work
with negative weighted graphs. Moreover, it can perform more
efficiently as compared to Floyd-Warshall algorithm [2] if the
size of the input is very larger.
In future, it would be interesting to perform GPU implementa-
tion of Floyd-Warshall algorithm [2] and compare the resulting
algorithm with the proposed solution.

REFERENCES
[1] Javaid, Adeel. Understanding Dijkstra Algorithm. A Review Paper available on

SSRN Electronic Library at https://ssrn.com/abstract=2340905, P 1-27, 2013
[2] Taştan, Oğuzhan & Eryüksel, Oğul & Temizel, Alptekin. Accelerating

Johnson's All-Pairs Shortest Paths Algorithm on GPU, A report avail-
able at https://github.com/ouzan19/JohnsonAlgoCUDA. P 1-6, 2017.

[3] Xing, Lizhi, and Yujie Li. Revised Floyd-Warshall Algorithm to Find
Optimal Path in Similarity-Weight Network and Its Application in the
Analysis of Global Value Chain. In Journal of Physics: Conference
Series, Vol. 1298, No. 1, P 1-6, IOP Publishing, 2019.

[4] Abu-Ryash, H., and A. Tamimi. Comparison studies for different
shortest path algorithms. International Journal of Computers and Ap-
plications, Vol 14, No. 8, Pages 5979-5986, 2015.

[5] Walden, David. The Bellman-Ford Algorithm and Distributed Bell-
man-Ford. P 1-12, A technical report available at
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.84.6549,
2005.

[6] Biradar, Anil & Gopala, Harish. A Systolic Solution for Computing
the Symmetrizer of a Hessenberg Matrix. Available at
https://www.researchgate.net/publication/264849768_A_Systolic_Sol
ution_for_Computing_the_Symmetrizer_of_a_Hessenberg_Matrix,
2021. (Unpublished)

[7] Venkataraman, Gayathri, Sartaj Sahni, and Srabani Mukhopadhyaya.
A blocked all-pairs shortest-paths algorithm. Journal of Experimental
Algorithmics (JEA), Vol 8, P1-19, 2003.

[8] Klugman SA. Heckman–Meyers Algorithm. Encyclopedia of Actuari-
al Science. Wiley Online Library, Vol 2, 2006.

[9] Madduri, K., Bader, D. A., Berry, J. W., & Crobak, J. R. An experi-
mental study of a parallel shortest path algorithm for solving large-
scale graph instances. In 2007 Proceedings of the Ninth Workshop on
Algorithm Engineering and Experiments (ALENEX), P 23-35. Socie-
ty for Industrial and Applied Mathematics, 2007.

[10] Berry, Jonathan W., et al. Parallel Shortest Path Algorithms for Solv-
ing Large-Scale Instances. No. SAND2006-6307P. Sandia National
Lab (SNL-NM), Albuquerque, NM (United States), 2006.

[11] Crauser, A.: LEDA-SM: External Memory Algorithms and Data
Structures in Theory and Practice. PhD thesis, Universität des Saar-
landes, Saarbrücken, http://www.mpi-sb.mpg.de/~crauser/diss.pdf,
2001.

[12] J. Nickolls and I. Buck. NVIDIA CUDA software and GPU parallel
computing architecture. Microprocessor Forum, May 2007.

[13] Han, W.Y. An improvement on fixed order Bellman-Ford algorithm. J.
Harbin Inst. Technol. Vol 46, P. 58–62. 2014

[14] Kole, Sebastiaan & Figge, Marc & Raedt, H. Unconditionally Stable
Algorithms to Solve the Time-Dependent Maxwell Equations. Physi-
cal review. Vol 64, No. 6 (066705), 2002.

[15] Ortega-Arranz H, Llanos DR, Gonzalez-Escribano A. The shortest-
path problem: Analysis and comparison of methods. Synthesis Lec-
tures on Theoretical Computer Science. Vol 1, No. 1, P. 1-87. 2014.

