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Reviewing Matrix Multiplication 
 

Neelam Amien, Abida Naseem 
 

Abstract—Algorithm written using different methods can still give same result. One of the ways to determine whether a solution is 
optimal or not is to determine how much time does it take to solve the specific problem. The problem that is targeted in this paper is 
Matrix multiplication that is widely used in many scientific computations. Different solutions of this problem are evaluated in this paper 
and all of them are compared on the basis of their time complexity. After comparing five most known algorithms for matrix multiplication 
we concluded that coppersmith-winograd algorithm is fastest in terms of time. 
Index Terms—Algorithm, Complexity, Coppersmith, Winograd, Comparison, Matrix multiplication, Strassen 

——————————   u   ———————

1   INTRODUCTION 
s we all know algorithm is the set of instructions to be 
followed by a computer or machine to solve a specific 

problem. This set of instructions for the same problem can 
vary according to the thinking of the one devising it. It means 
same problem can have different solution but same result 
depending on the method adopted to approach the solution. It 
depends on the user which solution he uses to proceed with his 
problem depending on his requirement (less space, less time, 
less resources consumption). 

Most of the algorithms now a day are judged based on their 
time complexity that is the time an algorithm takes to solve 
some specific problem. Gone are the days when space 
complexity was also considered as an important factor in 
efficiency of the algorithm because memory is now very 
cheaper. 

 One other element that is considered while examining the 
efficiency of an algorithm is its usage of processors. Some 
algorithms mostly small uses one processor to compute the 
problem and provide the results(Sequential Execution).While 
algorithm with complex statements and having sub-problems 
in them require more than one  processor to  compute their sub 
problems simultaneously on different CPU’s(Parallel 
Execution). 

 In this paper we will re-examine the algorithms of matrix 
multiplication and judge them on the basis of key factor of 
their efficiency that is time complexity. 

Matrix multiplication is the base of many computational 
problems including theory of networks, transforming co-
ordinate systems, modeling of population, translation, scaling 
and rotation of graphics, quantum mechanics, counting 
number of walks between the two nodes of a graph and many 
more. Matrix multiplication is basically correspondence to 
linear map compositionsError! Reference source not found.. 

In Matrix Multiplication two Matrix A and B are multiplied 
providing that the count of matrix A columns must be equal to 

count of matrix B rows and result is stored in a C matrix 
having rows count of matrix A(matrix 1) and column count of 
B ( matrix 2). 
 

A                  B                       C 
!𝑎11				𝑎12𝑎21					𝑎22&	!

𝑏11				𝑏12
𝑏21				𝑏22&		=		!

𝑐11					𝑐12
𝑐21					𝑐22&	

 
As mentioned earlier many solutions have been provided 

by different authors to solve the problem of matrix 
multiplication efficiently. But time is the most expensive 
commodity now a days. An algorithm that works faster 
occupying more memory is lot better than an algorithm that is 
slower but occupies less computer memory that is why we will 
discuss some well-known approaches in this paper and will 
find the one which is optimal in terms of time. 
1. Naïve approach of matrix Multiplication 
2. PUMMA 
3. SUMMA 
4. Strassen’s Algorithm 
5. Canon’s Algorithm 
6. Coppersmith-Winograd algorithm 

We will test each of the above algorithms. Our paper is 
arranged in following manner: in section 2 we give an 
evaluation study related to matrix multiplication, in section 3 
we give a brief review of naïve approach of matrix 
multiplication, in section 4 we present SUMMA algorithm. 
Similarly, section 5 presents PUMMA, in section 6 Strassen’s 
algorithm is presented, Section 7 present Canon’s algorithm, 
and Section 8 displays Coppersmith-Winograd algorithm, 
Comparison of above algorithms is presented in Section 9, 
Section 10 evaluates Strassen and CW algorithm briefly. 
Finally, conclusion and future work is discussed in Section 11. 

2   RELATED WORKS 
In [1], the authors of the paper were interested in reduction of 
multiplication cost for small size matrices. Observing the 
preceding effort of Mezzarobba, Fischer, Probert, and Smith, 
in a similar domain, they kept Strassen, Pan, Laderman, 
Winograd, algorithms for small matrices as base, shown the 
way to utilize these merit algorithms in a better course of 
action. They elaborated the usage of their computed results by 
illustrating and creating codes of multiplication on several 
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areas, such as differential operators, integers, linear operators 
of recurrence and polynomials. In Error! Reference source 
not found., the authors examined the execution and 
extensibility of several of matrix multiplication algorithms of 
parallel distribution and envisioned the circumstances under 
which those formulation are superior to the other formulations. 
They concluded that the Gustafson-Kessel algorithm presented 
in their paper defeated all other algorithms devised for a 
specific number of processors and sizes of matrices. 

In Error! Reference source not found., the authors tried 
to make Strassen’s algorithm memory efficient. First, the 
algorithm centrally uses a Morton (nonstandard array layout) 
based on a quad-tree partitioning of the matrix. Second, they 
selected the recursion trimming point dynamically to lower 
distance without influencing the algorithm’s performance. 
Each strategy is critical for execution, and these combination 
of their codes increases their effectiveness. After comparing 
their algorithm with other implementation performance wise 
they showed that their implementation often defeats the 
substitute techniques (to 25%).  

In [14], the authors wrote about the production of an 
efficient and easy implementation of algorithm of Strassen of 
matrix-multiplication. The idea designed by them can 
substitute the level III BLAS multiplication of matrix method. 
Optimal performance and low memory size were achieved for 
all sizes of matrices. Authors also reported that   algorithm of 
Strassen is practical approach for big size matrices. 

 In Error! Reference source not found., a new 
distribution scheme was proposed by the author for Strassen 
algorithm for parallel multiplication of matrix on clusters of 
heterogeneous type. So their implementation not only 
achieved load balancing but also reduced the count of total 
operation. Consequently they succeeded in achieving nearly 
21.7% speedup in comparison to the classical parallel 
heterogeneous clustering environment  Strassen’s algorithm. 
 
3   NAIVE APPROACHES  
Naive matrix multiplication refers to the approach that we 
use for multiplication of matrices. Explicitly, suppose two 
Matrix A and B are multiplied providing 

Case 1: Matrix A and matrix B are matrices of same 
size(square) and result is stored in a C matrix which will also 
be square matrix. Where a11, b11, c11 are first elements of 
each matrix A, B, and C respectively. Similarly a12, b12, and 
c12 are the second element of first row and first element of 
second column in matrix A, B and C respectively and so on.                                                                                                                          
 

A                  B                      C 
!a11 a12
a21 a22& !

b11 b12
b21 b22&		=  !c11					c12c21					c22& 

 
Case 2: That first matrix is a row matrix and second matrix is 
a column matrix the product will be a 1x1 matrix. 

A              B             C 
[a11 a12]	!b11b21&		=  [c11] 

   
Case 3: That first matrix is a column matrix and second 
matrix is a row matrix and the product will be an outer product 
matrix 

A              B                      C 

!a11a21&		
[b11 b12]	=  !c11					c12c21					c22& 

 
Where, 
A = (Apk)1 <= p <= n,1 <= k <= m is a nxm matrix 
B = (kl)1 <= k <= n,1 <= l <= p is a nxp matrix 
C = (cpl) 1 <= p <= m, 1 <= l <= p  
 
3.1 Complexity of Naïve approach  
Time complexity of naïve approach for all the three cases 
discussed as follows. 

As per case 1 when variables m, n, p are equal the 
multiplications needed would be n3. Similarly in case 2 where 
n can be arbitrary while m and p are equal than required 
multiplications would be N. In case 3 where n=1 considering 
m and p arbitrary the required multiplications would be N. So 
the time complexity for the naïve approach using 4 addition 
and 8 multiplication using master theorem is O(n3). 
 
4   SUMMA 
The summa (Scalable Universal Matrix Multiplication 
Algorithm) is more practical algorithm that requires less 
workspace. This algorithm is less efficient but is quite easy to 
generalize. It also uses shift algorithm and broadcast 
technique. This algorithm completes its process in four simpler 
steps: first, owner of partial row and column 0 broadcast row 
and column along its process column and row respectively. 
Second, owner of partial row and column 1 broadcast row and 
column along its process column and row respectively. Third, 
owner of partial row and column 2 broadcast row and column 
along its process column and row respectively and at the end 
the sum of all entries are computed in a single matrix for a 3x3 
matrix multiplication. Basic algorithm for Scalable universal 
matrix multiplicationError! Reference source not found.: 
 
SUMMA 
for k = 0 to n − 1 do 
for all i = 1 to prow do 
Owner of A(i, k) broadcasts it to whole processor row; 
end for 
for all j = 1 to pcolumn do 
owner of B(k, j) broadcasts it to whole processor column; 
end for 
A(i, k)=Acolumn 
B(k, j)=Brow 
C = C + Acolumn * Brow 
end for 
where, prow and pcolumn are processor grids and prow = pcolumn. So, 
the time complexity of SUMMA algorithm become T(p) = 2 ∗ 
n3/p + α ∗ log p ∗ n/b + β ∗ log p ∗ n2/s. This can be 
generalized as n3 with α= starting cost of message, 
β=bandwidth. 
 
5   PUMMA  
PUMMA (Parallel Universal Matrix Multiplication Algorithm) 
is used for performing matrix multiplication operations on 
systems distributed memory. In a distributive memory systems 
there are more matrix multiplication than an ordinary 
sequential system. In this algorithm multiple processors are 
used to compute the result of multiplication of Matrices A B. 
Parallel matrix multiplication is a displacement algorithm .in 
which data distribution in block cycles is displayed over two-
dimensional processor grid[13]. 
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The general matrix multiplication see routine for optimal 
pure block decomposition. Routnes xGEMM is an example 
which is optimal whenever considering the routine is isolated. 

 
PUMMA 
Do k = 0, Mb_ 1 
With each column across different template  
Prado l= 0, Mb -- 1  
Kp  |(k+1, Lb)| 
Prado j ==0  Nb -- 1 
F ( I,j )= F(I,j ) + M(I,kp ) . N ( k ,p, j ) 
Terminate Prado 
Role a leftword 
End do. 
 

The processor template’s column at the initial of the step is 
multiplied with block broadcast containing the required 
routine.  
PUMMA Contd. 
Include mp I .h 
#--define F(I,j)  (f[j*1df+I]) 
#--define g (i,j )  ( f[j*1dg+I]) 
#--define H ( I,j) (g[j*1dc +I]) 
#--define min (x,y) ( ( x) <((y) ? (X) :(y)) 
Int I one =1; 
double d one = ,0; 
d_zero = 0,0; 
void pdgmm(m,n ,k,ng,alpha,f,Idf,g , I dg,beta,h,idg ,mf 
,nf,mg,ng,mh, nh,commrow ,commoncol,work1,work20) 
Int m, n, k, ng, mf[], nf[] mg [], ng[] mg[], nh[], Idf,idg ,idh ;  
Double *f, *g, *h; 
alpha, beta, 
*Work1,*work2; 
Mpi_comm comm_row 
{Int myrow ,my col, 
nprow , npcol, 
i,j,kk,iwrk,icurrow,icurcol, 
ii,jj 
double xtemp; 
double xp 
For (c=o;c<n_h[[ mycolumn] ; c++) 
For (d=0 ; d< m_h[myrow]; d++) 
H (c,d) = beta *H (c,d); 
 

As per its parallel nature PUMMA Algorithm also shows 
time complexity of O(n3). 
 
6   STRASSEN’S ALGORITHM 
In 1960 Strassen provided a method of matrix multiplication 
and claimed that this algorithm has less time complexity than 
that of classical approach to matrix multiplication. Basically 
this algorithm reduced the multiplication operation that cannot 
be solved in linear time and increased the addition operation 
that are solvable in linear time hence decreased the time 
complexityError! Reference source not found.. 

So this algorithm basically reduces the recursive calls to 
7(that was originally 8 in classical approach.)It divides the 
matrices to sub matrices of N/2xN/2 size and compute their 
result 
                    A                B                      R 
						! 𝑙11				𝑙12𝑙21					𝑙22&	!

𝑚11				𝑚12
𝑚21				𝑚22&		=		!

𝑟11					𝑟12
𝑟21					𝑟22&	

 
Where, 
r11=s5+ s4 -s2+ s6,  
r12=s1+s2,  
r21=s3+s4,  
r22=s1 +s5- s3- s7, and  

s1 = l11(m12-m22),  
s2 = (l11+l12) m22,  
s3 = (l21+l22) m11,  
s4 = l22(m21-m11),  
s5 = (l11+l22) (m11+m22),  
s6 = (l12-l22) (m21+m22),  
s7 = (l11-l21) (m11+m12) 

As addition/subtraction of 2 matrices A and B takes O(N2) 
time. Its time of execution can be written as S(N)=7S(N/2) + 
O(N2). Time complexity of Strasssen algorithm is O(nLog7) ≈ 
O(n2.8074) by Master Theorem. 
 
7   CANNON’S ALGORITHM 

Cannon's matrix multiplication algorithm is an algorithm 
distributed for two-dimensional meshes that was given by 
Lynn Elliot Cannon in 1969. 

It uses shift mechanism for multiplication of matrices and 
provide processes equal to order of matrix and operations 
equal to sqrt(processes). 

 

For A=2
l11	l12	l13	l14
l21	l22	l23	l24
l31	l32	l33	l34
l41	l42	l43	l44

6 

For B=2
m11	m12	m13	m14
m21	m22	m23	m24
m31	m32	m33	m34
m41	m42	m43	m44

6 

 
Every element of matrix will be possessed by different 

processes hence total no of processes for above 4x4 matrix 
will be 16 and total number of steps will be square root (16) = 
4. 

Step1: we find A1 and B1 from matrix A and matrix B 
respectively by following process: 

 

A=2	
a11		a12		a13		a14
a21		a22		a23		a24
a31		a32		a33		a34
		a41		a42		a43		a44

6 2
0	left	shift
1	left	shift
2	left	shift
3	left	shift

6 

A1=2
a11	a12	a13	a14
a22	a23	a24	a21
a33	a34	a31	a32
a42	a43	a44	a41

6 

 
For B1 we do 0,1,2,3 shifts from bottom respectively 
 

B=2
b11	b12	b13	b14
b21	b22	b23	b24
b31	b32	b33	b34
b41	b42	b43	b44

6 , B1 2
b11	b22	b33	b24
b21	b32	b43	b34
b31	b42	b13	b44
b41	b12	b23	b14

6 

 
C1[m][n] = A1[m][n] * B1[m][n] for m=i, n=j 

 
Step 2: we find A2 from A1 and B2 from B1 using 

following process: 
 

A2=2
l11	l12	l13	l14
l22	l23	l24	l21
l33	l34	l31	l32
l42	l43	l44	l41

6 2
1	left	shift
1	left	shift
1	left	shift
1	left	shift

6 
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A2= 2
l12	l13	l14	l11
l23	l24	l21	22
l34	l31	l32	l33
l43	l44	l41	l42

6 

 
For B2 we will do 0,1,2,3 shifts from bottom of B1 

respectively. 
C2[m][n] = A2[m][n] * B2[m][n] 

 
Step 3: A3, B3 will be obtained from A2 and B2 by the 

same procedure in step 2. 
C3[m][n] = A3[m][n] * B3[m][n] 

 
Step 4: A4, A3 will be obtained from A3 and B3 by the 

same procedure in step 2. 
C4[i][j] = A4[i][j] * B4[i][j] 
and finally, result will be C = C1+C2+C3+C4 
Time complexity: 

1) The maximum shift distance of matrix shift is √p −1 
2) Each √p single-step shifts in the compute-and-shift 

phase takes ts+twn²⁄p time 
3) By Multiplying √p submatrices of size (n/√p)×(n/√p) 

total time taken is : n³/p. 

 
8   COPPERSMITH -WINOGRAD 
This Algorithm was given by two authors \ coppersmith and 
Winograd and it was the quickest matrix multiplication 
algorithm from 1990 to 2010. It multiplies p*p matrices in 
O(p2.375477)time. 

This algorithm is an up gradation of the naive algorithm 
with O(n3) time and also taking the less time than the 
algorithm of Strassen which takes O(n2.807355) time to 
executeError! Reference source not found.. 

 Algorithm is rarely in use and impractical because of its 
large constant factors in their running time and there is 
possibility for the improvement of exponents further, which 
required it as exponent power should be at least 2 mean 
m*m=m2 value in the computed result. For example, if input: 
M1={{1,2},{3,4}} and M2= {{3,2},{5,1}}, then the 
result={{13,4},{29,10}} along with the output: resultant 
matrix will be matching. 
 
Coppersmith Winograd Algorithm: 
 
1: Start 
2: By taking the matrices of M1, M2, M3 as input of 

(n*n). 
3: Choose matrices a[n][1] and randomly will be zero or 

1. 
4: Calculate matrix multiplication M2*a, and M3 

multiply with a and M1*(M2*a) for computing the 
M1*(M2*a) M3*a… 

5: Verify it if M1*(M2*a) – M3*a multiplication performs. 
6: If it is 0 or false matrices multiplication will be correct 

otherwise program will end. 
 
Andrew Stothers improved the algorithm in 2010 with 

display style mythical O (n2.374) display style mythical O 
(n2.374). In 2011 Virginia William’s strengthen the bound of 
display style mythical O (n2.3728642) by incorporating a 

mathematical shortcut from paper of Stothers incorporating 
her own observations and automatic computers optimization. 

 
To prove theoretical time bounds the algorithm of this 

algorithm is often used as a base in other 
algorithms.Dissimilar to the Strassen algorithm, it is rarely in 
use now  because its only useful for the matrices that are too 
large for modern hardware to handle (as making its galactic 
algorithm).The coppersmith Winograd algorithm has been 
re_derived using a group of theoretic construction by Robert 
Kleinberg , Henry Cohn , Chris Umans and Balazs Szegedy. 
They also demonstrated that any of two conjunctions implies 
that the ideal 2 as exponent of matrix multiplication has long 
been assumed.They were anyway unable to come up with a 
particular solution that would result in faster time. 
 
9   COMPARISONS 

Based on time complexities we can compare all the algorithms 
as follow: 

                        
 

As we have now concluded that other algorithm except 
Strassen’s and Coppersmith-Winograd are not efficient in 
terms of time complexity so in the next section we’ll target the 
comparison of both the algorithms. 

 
10   STRASSEN VS COPPERSMITH-WINOGRAD 
In an algorithm for the dot product of matrices of any shapes 
and sizes it is very inappropriate approach to first fill the 
matrices with 0 and to the next power 2.  Adding 0’s in one 
row or column of each dimension is more appropriate, but the 
best approach is to divide into different sizes, using 
recurrences and shifting to Winograd’s or the naïve approach  
for small matrices. It is certainly ineffective to use Strassen’s 
recursion for 1×1 matrices. 

The best exponent gradually dropped over the following 
few years. The best record now is still the 2.376 by 
Coppersmith and Winograd. However, this algorithm involves 
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a lot of constant factors. So the Strassen’s algorithm is the 
only practical approach. 

Since the time complexity of Coppersmith-Winograd 
algorithm for multiplication of two matrices in O(n2.37). On the 
other hand Strassen’s Method provide O(n2.80) time complexity 
for multiplication of two square matrices. Hence based on time 
complexity Coppersmith-Winograd algorithm is better than 
Strassen’s algorithm. 
 
11   CONCLUSION AND FUTURE WORK 
Based on their time complexities, we can conclude that 
Coppersmith-Winograd algorithm is the best algorithm from 
all other algorithms that are discussed in this article, so far. 
But if it comes to sizes of matrices the more practical approach 
is Strassen’s algorithm because of involvement of huge 
constant factors. 

In future, we will try to run these algorithms on specific 
hardware and report the results accordingly. 
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