
JOURNAL OF COMPUTATIONAL LEARNING STRATEGIES & PRACTICES, A03

Volume 1, Issue 1 © 2021 JCLSP Published by the CLSP

13

Reviewing Matrix Multiplication

Neelam Amien, Abida Naseem

Abstract—Algorithm written using different methods can still give same result. One of the ways to determine whether a solution is
optimal or not is to determine how much time does it take to solve the specific problem. The problem that is targeted in this paper is
Matrix multiplication that is widely used in many scientific computations. Different solutions of this problem are evaluated in this paper
and all of them are compared on the basis of their time complexity. After comparing five most known algorithms for matrix multiplication
we concluded that coppersmith-winograd algorithm is fastest in terms of time.
Index Terms—Algorithm, Complexity, Coppersmith, Winograd, Comparison, Matrix multiplication, Strassen

—————————— u ———————

1 INTRODUCTION
s we all know algorithm is the set of instructions to be
followed by a computer or machine to solve a specific

problem. This set of instructions for the same problem can
vary according to the thinking of the one devising it. It means
same problem can have different solution but same result
depending on the method adopted to approach the solution. It
depends on the user which solution he uses to proceed with his
problem depending on his requirement (less space, less time,
less resources consumption).

Most of the algorithms now a day are judged based on their
time complexity that is the time an algorithm takes to solve
some specific problem. Gone are the days when space
complexity was also considered as an important factor in
efficiency of the algorithm because memory is now very
cheaper.

 One other element that is considered while examining the
efficiency of an algorithm is its usage of processors. Some
algorithms mostly small uses one processor to compute the
problem and provide the results(Sequential Execution).While
algorithm with complex statements and having sub-problems
in them require more than one processor to compute their sub
problems simultaneously on different CPU’s(Parallel
Execution).

 In this paper we will re-examine the algorithms of matrix
multiplication and judge them on the basis of key factor of
their efficiency that is time complexity.

Matrix multiplication is the base of many computational
problems including theory of networks, transforming co-
ordinate systems, modeling of population, translation, scaling
and rotation of graphics, quantum mechanics, counting
number of walks between the two nodes of a graph and many
more. Matrix multiplication is basically correspondence to
linear map compositionsError! Reference source not found..

In Matrix Multiplication two Matrix A and B are multiplied
providing that the count of matrix A columns must be equal to

count of matrix B rows and result is stored in a C matrix
having rows count of matrix A(matrix 1) and column count of
B (matrix 2).

A B C
!𝑎11				𝑎12𝑎21					𝑎22&	!

𝑏11				𝑏12
𝑏21				𝑏22&		=		!

𝑐11					𝑐12
𝑐21					𝑐22&	

As mentioned earlier many solutions have been provided

by different authors to solve the problem of matrix
multiplication efficiently. But time is the most expensive
commodity now a days. An algorithm that works faster
occupying more memory is lot better than an algorithm that is
slower but occupies less computer memory that is why we will
discuss some well-known approaches in this paper and will
find the one which is optimal in terms of time.
1. Naïve approach of matrix Multiplication
2. PUMMA
3. SUMMA
4. Strassen’s Algorithm
5. Canon’s Algorithm
6. Coppersmith-Winograd algorithm

We will test each of the above algorithms. Our paper is
arranged in following manner: in section 2 we give an
evaluation study related to matrix multiplication, in section 3
we give a brief review of naïve approach of matrix
multiplication, in section 4 we present SUMMA algorithm.
Similarly, section 5 presents PUMMA, in section 6 Strassen’s
algorithm is presented, Section 7 present Canon’s algorithm,
and Section 8 displays Coppersmith-Winograd algorithm,
Comparison of above algorithms is presented in Section 9,
Section 10 evaluates Strassen and CW algorithm briefly.
Finally, conclusion and future work is discussed in Section 11.

2 RELATED WORKS
In [1], the authors of the paper were interested in reduction of
multiplication cost for small size matrices. Observing the
preceding effort of Mezzarobba, Fischer, Probert, and Smith,
in a similar domain, they kept Strassen, Pan, Laderman,
Winograd, algorithms for small matrices as base, shown the
way to utilize these merit algorithms in a better course of
action. They elaborated the usage of their computed results by
illustrating and creating codes of multiplication on several

A

————————————————

• First Author is residing in District Mandi Bahauddin, 50400,
Pakistan, E-mail: neelamamien881@gmail.com.
• Second Author is residing at Mitha Tiwana, District Khushab,
41250, Pakistan, E-mail: abidanaseem3719@gmail.com

JOURNAL OF COMPUTATIONAL LEARNING STRATEGIES & PRACTICES, A03 14

areas, such as differential operators, integers, linear operators
of recurrence and polynomials. In Error! Reference source
not found., the authors examined the execution and
extensibility of several of matrix multiplication algorithms of
parallel distribution and envisioned the circumstances under
which those formulation are superior to the other formulations.
They concluded that the Gustafson-Kessel algorithm presented
in their paper defeated all other algorithms devised for a
specific number of processors and sizes of matrices.

In Error! Reference source not found., the authors tried
to make Strassen’s algorithm memory efficient. First, the
algorithm centrally uses a Morton (nonstandard array layout)
based on a quad-tree partitioning of the matrix. Second, they
selected the recursion trimming point dynamically to lower
distance without influencing the algorithm’s performance.
Each strategy is critical for execution, and these combination
of their codes increases their effectiveness. After comparing
their algorithm with other implementation performance wise
they showed that their implementation often defeats the
substitute techniques (to 25%).

In [14], the authors wrote about the production of an
efficient and easy implementation of algorithm of Strassen of
matrix-multiplication. The idea designed by them can
substitute the level III BLAS multiplication of matrix method.
Optimal performance and low memory size were achieved for
all sizes of matrices. Authors also reported that algorithm of
Strassen is practical approach for big size matrices.

 In Error! Reference source not found., a new
distribution scheme was proposed by the author for Strassen
algorithm for parallel multiplication of matrix on clusters of
heterogeneous type. So their implementation not only
achieved load balancing but also reduced the count of total
operation. Consequently they succeeded in achieving nearly
21.7% speedup in comparison to the classical parallel
heterogeneous clustering environment Strassen’s algorithm.

3 NAIVE APPROACHES
Naive matrix multiplication refers to the approach that we
use for multiplication of matrices. Explicitly, suppose two
Matrix A and B are multiplied providing

Case 1: Matrix A and matrix B are matrices of same
size(square) and result is stored in a C matrix which will also
be square matrix. Where a11, b11, c11 are first elements of
each matrix A, B, and C respectively. Similarly a12, b12, and
c12 are the second element of first row and first element of
second column in matrix A, B and C respectively and so on.

A B C
!a11 a12
a21 a22& !

b11 b12
b21 b22&		= !c11					c12c21					c22&

Case 2: That first matrix is a row matrix and second matrix is
a column matrix the product will be a 1x1 matrix.

A B C
[a11 a12]	!b11b21&		= [c11]

Case 3: That first matrix is a column matrix and second
matrix is a row matrix and the product will be an outer product
matrix

A B C

!a11a21&		
[b11 b12]	= !c11					c12c21					c22&

Where,
A = (Apk)1 <= p <= n,1 <= k <= m is a nxm matrix
B = (kl)1 <= k <= n,1 <= l <= p is a nxp matrix
C = (cpl) 1 <= p <= m, 1 <= l <= p

3.1 Complexity of Naïve approach
Time complexity of naïve approach for all the three cases
discussed as follows.

As per case 1 when variables m, n, p are equal the
multiplications needed would be n3. Similarly in case 2 where
n can be arbitrary while m and p are equal than required
multiplications would be N. In case 3 where n=1 considering
m and p arbitrary the required multiplications would be N. So
the time complexity for the naïve approach using 4 addition
and 8 multiplication using master theorem is O(n3).

4 SUMMA
The summa (Scalable Universal Matrix Multiplication
Algorithm) is more practical algorithm that requires less
workspace. This algorithm is less efficient but is quite easy to
generalize. It also uses shift algorithm and broadcast
technique. This algorithm completes its process in four simpler
steps: first, owner of partial row and column 0 broadcast row
and column along its process column and row respectively.
Second, owner of partial row and column 1 broadcast row and
column along its process column and row respectively. Third,
owner of partial row and column 2 broadcast row and column
along its process column and row respectively and at the end
the sum of all entries are computed in a single matrix for a 3x3
matrix multiplication. Basic algorithm for Scalable universal
matrix multiplicationError! Reference source not found.:

SUMMA
for k = 0 to n − 1 do
for all i = 1 to prow do
Owner of A(i, k) broadcasts it to whole processor row;
end for
for all j = 1 to pcolumn do
owner of B(k, j) broadcasts it to whole processor column;
end for
A(i, k)=Acolumn
B(k, j)=Brow
C = C + Acolumn * Brow
end for
where, prow and pcolumn are processor grids and prow = pcolumn. So,
the time complexity of SUMMA algorithm become T(p) = 2 ∗
n3/p + α ∗ log p ∗ n/b + β ∗ log p ∗ n2/s. This can be
generalized as n3 with α= starting cost of message,
β=bandwidth.

5 PUMMA
PUMMA (Parallel Universal Matrix Multiplication Algorithm)
is used for performing matrix multiplication operations on
systems distributed memory. In a distributive memory systems
there are more matrix multiplication than an ordinary
sequential system. In this algorithm multiple processors are
used to compute the result of multiplication of Matrices A B.
Parallel matrix multiplication is a displacement algorithm .in
which data distribution in block cycles is displayed over two-
dimensional processor grid[13].

Neelam Amien, Abida Naseem: Reviewing Matrix Multiplication 15

The general matrix multiplication see routine for optimal
pure block decomposition. Routnes xGEMM is an example
which is optimal whenever considering the routine is isolated.

PUMMA
Do k = 0, Mb_ 1
With each column across different template
Prado l= 0, Mb -- 1
Kp |(k+1, Lb)|
Prado j ==0 Nb -- 1
F (I,j)= F(I,j) + M(I,kp) . N (k ,p, j)
Terminate Prado
Role a leftword
End do.

The processor template’s column at the initial of the step is
multiplied with block broadcast containing the required
routine.
PUMMA Contd.
Include mp I .h
#--define F(I,j) (f[j*1df+I])
#--define g (i,j) (f[j*1dg+I])
#--define H (I,j) (g[j*1dc +I])
#--define min (x,y) ((x) <((y) ? (X) :(y))
Int I one =1;
double d one = ,0;
d_zero = 0,0;
void pdgmm(m,n ,k,ng,alpha,f,Idf,g , I dg,beta,h,idg ,mf
,nf,mg,ng,mh, nh,commrow ,commoncol,work1,work20)
Int m, n, k, ng, mf[], nf[] mg [], ng[] mg[], nh[], Idf,idg ,idh ;
Double *f, *g, *h;
alpha, beta,
*Work1,*work2;
Mpi_comm comm_row
{Int myrow ,my col,
nprow , npcol,
i,j,kk,iwrk,icurrow,icurcol,
ii,jj
double xtemp;
double xp
For (c=o;c<n_h[[mycolumn] ; c++)
For (d=0 ; d< m_h[myrow]; d++)
H (c,d) = beta *H (c,d);

As per its parallel nature PUMMA Algorithm also shows
time complexity of O(n3).

6 STRASSEN’S ALGORITHM
In 1960 Strassen provided a method of matrix multiplication
and claimed that this algorithm has less time complexity than
that of classical approach to matrix multiplication. Basically
this algorithm reduced the multiplication operation that cannot
be solved in linear time and increased the addition operation
that are solvable in linear time hence decreased the time
complexityError! Reference source not found..

So this algorithm basically reduces the recursive calls to
7(that was originally 8 in classical approach.)It divides the
matrices to sub matrices of N/2xN/2 size and compute their
result
 A B R
						! 𝑙11				𝑙12𝑙21					𝑙22&	!

𝑚11				𝑚12
𝑚21				𝑚22&		=		!

𝑟11					𝑟12
𝑟21					𝑟22&	

Where,
r11=s5+ s4 -s2+ s6,
r12=s1+s2,
r21=s3+s4,
r22=s1 +s5- s3- s7, and

s1 = l11(m12-m22),
s2 = (l11+l12) m22,
s3 = (l21+l22) m11,
s4 = l22(m21-m11),
s5 = (l11+l22) (m11+m22),
s6 = (l12-l22) (m21+m22),
s7 = (l11-l21) (m11+m12)

As addition/subtraction of 2 matrices A and B takes O(N2)
time. Its time of execution can be written as S(N)=7S(N/2) +
O(N2). Time complexity of Strasssen algorithm is O(nLog7) ≈
O(n2.8074) by Master Theorem.

7 CANNON’S ALGORITHM

Cannon's matrix multiplication algorithm is an algorithm
distributed for two-dimensional meshes that was given by
Lynn Elliot Cannon in 1969.

It uses shift mechanism for multiplication of matrices and
provide processes equal to order of matrix and operations
equal to sqrt(processes).

For A=2
l11	l12	l13	l14
l21	l22	l23	l24
l31	l32	l33	l34
l41	l42	l43	l44

6

For B=2
m11	m12	m13	m14
m21	m22	m23	m24
m31	m32	m33	m34
m41	m42	m43	m44

6

Every element of matrix will be possessed by different

processes hence total no of processes for above 4x4 matrix
will be 16 and total number of steps will be square root (16) =
4.

Step1: we find A1 and B1 from matrix A and matrix B
respectively by following process:

A=2	
a11		a12		a13		a14
a21		a22		a23		a24
a31		a32		a33		a34
		a41		a42		a43		a44

6 2
0	left	shift
1	left	shift
2	left	shift
3	left	shift

6

A1=2
a11	a12	a13	a14
a22	a23	a24	a21
a33	a34	a31	a32
a42	a43	a44	a41

6

For B1 we do 0,1,2,3 shifts from bottom respectively

B=2
b11	b12	b13	b14
b21	b22	b23	b24
b31	b32	b33	b34
b41	b42	b43	b44

6 , B1 2
b11	b22	b33	b24
b21	b32	b43	b34
b31	b42	b13	b44
b41	b12	b23	b14

6

C1[m][n] = A1[m][n] * B1[m][n] for m=i, n=j

Step 2: we find A2 from A1 and B2 from B1 using

following process:

A2=2
l11	l12	l13	l14
l22	l23	l24	l21
l33	l34	l31	l32
l42	l43	l44	l41

6 2
1	left	shift
1	left	shift
1	left	shift
1	left	shift

6

JOURNAL OF COMPUTATIONAL LEARNING STRATEGIES & PRACTICES, A03 16

A2= 2
l12	l13	l14	l11
l23	l24	l21	22
l34	l31	l32	l33
l43	l44	l41	l42

6

For B2 we will do 0,1,2,3 shifts from bottom of B1

respectively.
C2[m][n] = A2[m][n] * B2[m][n]

Step 3: A3, B3 will be obtained from A2 and B2 by the

same procedure in step 2.
C3[m][n] = A3[m][n] * B3[m][n]

Step 4: A4, A3 will be obtained from A3 and B3 by the

same procedure in step 2.
C4[i][j] = A4[i][j] * B4[i][j]
and finally, result will be C = C1+C2+C3+C4
Time complexity:

1) The maximum shift distance of matrix shift is √p −1
2) Each √p single-step shifts in the compute-and-shift

phase takes ts+twn²⁄p time
3) By Multiplying √p submatrices of size (n/√p)×(n/√p)

total time taken is : n³/p.

8 COPPERSMITH -WINOGRAD
This Algorithm was given by two authors \ coppersmith and
Winograd and it was the quickest matrix multiplication
algorithm from 1990 to 2010. It multiplies p*p matrices in
O(p2.375477)time.

This algorithm is an up gradation of the naive algorithm
with O(n3) time and also taking the less time than the
algorithm of Strassen which takes O(n2.807355) time to
executeError! Reference source not found..

 Algorithm is rarely in use and impractical because of its
large constant factors in their running time and there is
possibility for the improvement of exponents further, which
required it as exponent power should be at least 2 mean
m*m=m2 value in the computed result. For example, if input:
M1={{1,2},{3,4}} and M2= {{3,2},{5,1}}, then the
result={{13,4},{29,10}} along with the output: resultant
matrix will be matching.

Coppersmith Winograd Algorithm:

1: Start
2: By taking the matrices of M1, M2, M3 as input of

(n*n).
3: Choose matrices a[n][1] and randomly will be zero or

1.
4: Calculate matrix multiplication M2*a, and M3

multiply with a and M1*(M2*a) for computing the
M1*(M2*a) M3*a…

5: Verify it if M1*(M2*a) – M3*a multiplication performs.
6: If it is 0 or false matrices multiplication will be correct

otherwise program will end.

Andrew Stothers improved the algorithm in 2010 with

display style mythical O (n2.374) display style mythical O
(n2.374). In 2011 Virginia William’s strengthen the bound of
display style mythical O (n2.3728642) by incorporating a

mathematical shortcut from paper of Stothers incorporating
her own observations and automatic computers optimization.

To prove theoretical time bounds the algorithm of this

algorithm is often used as a base in other
algorithms.Dissimilar to the Strassen algorithm, it is rarely in
use now because its only useful for the matrices that are too
large for modern hardware to handle (as making its galactic
algorithm).The coppersmith Winograd algorithm has been
re_derived using a group of theoretic construction by Robert
Kleinberg , Henry Cohn , Chris Umans and Balazs Szegedy.
They also demonstrated that any of two conjunctions implies
that the ideal 2 as exponent of matrix multiplication has long
been assumed.They were anyway unable to come up with a
particular solution that would result in faster time.

9 COMPARISONS

Based on time complexities we can compare all the algorithms
as follow:

As we have now concluded that other algorithm except
Strassen’s and Coppersmith-Winograd are not efficient in
terms of time complexity so in the next section we’ll target the
comparison of both the algorithms.

10 STRASSEN VS COPPERSMITH-WINOGRAD
In an algorithm for the dot product of matrices of any shapes
and sizes it is very inappropriate approach to first fill the
matrices with 0 and to the next power 2. Adding 0’s in one
row or column of each dimension is more appropriate, but the
best approach is to divide into different sizes, using
recurrences and shifting to Winograd’s or the naïve approach
for small matrices. It is certainly ineffective to use Strassen’s
recursion for 1×1 matrices.

The best exponent gradually dropped over the following
few years. The best record now is still the 2.376 by
Coppersmith and Winograd. However, this algorithm involves

Neelam Amien, Abida Naseem: Reviewing Matrix Multiplication 17

a lot of constant factors. So the Strassen’s algorithm is the
only practical approach.

Since the time complexity of Coppersmith-Winograd
algorithm for multiplication of two matrices in O(n2.37). On the
other hand Strassen’s Method provide O(n2.80) time complexity
for multiplication of two square matrices. Hence based on time
complexity Coppersmith-Winograd algorithm is better than
Strassen’s algorithm.

11 CONCLUSION AND FUTURE WORK
Based on their time complexities, we can conclude that
Coppersmith-Winograd algorithm is the best algorithm from
all other algorithms that are discussed in this article, so far.
But if it comes to sizes of matrices the more practical approach
is Strassen’s algorithm because of involvement of huge
constant factors.

In future, we will try to run these algorithms on specific
hardware and report the results accordingly.

REFRENCES

[1] G. W. Stewart, “Matrix Algorithms,” Matrix Algorithms, pp. 1–12,

1998, doi: 10.1137/1.9781611971408.
[2] Rivera, Cody, Jieyang Chen, Nan Xiong, Jing Zhang, Shuaiwen

Leon Song, and Dingwen Tao. "TSM2X: High-performance tall-
and-skinny matrix–matrix multiplication on GPUs." Journal of
Parallel and Distributed Computing, 151: 70-85, 2021.

[3] Drevet, C, Islam, M and Schost, R. “Optimization techniques for
small matrix multiplication”. Science Direct. Theoretical Computer
Science, 412, 2219–2236, 2011

[4] Robinson, Sara. "Toward an optimal algorithm for matrix
multiplication." SIAM news 38, No. 9: 1-3, 2005.

[5] Li, Junjie, Sanjay Ranka, and Sartaj Sahni. "Strassen's matrix
multiplication on GPUs." IEEE 17th International Conference on
Parallel and Distributed Systems. IEEE, 2011.

[6] Petros Drineas, Ravi Kannan, and Michael W. Mahoney. Fast Monte
Carlo algorithms for matrices I: Approximating matrix
multiplication. SIAM Journal on Computing, 36(1):132–157, 2006.

[7] Gupta, A and ICumar, V. “Scalability of Parallel Algorithms for
Matrix Multiplication”. International Conference on Parallel
Processing, 1993.

[8] D. Coppersmith and S. Winograd. Matrix multiplication via
arithmetic progressions. In STOC ’87: Proceedings of the nineteenth
annual ACM conference on Theory of computing, pages 1–6, New
York, NY, USA, 1987. ACM Press.

[9] Alman, Josh, and Virginia Vassilevska Williams. "A refined laser
method and faster matrix multiplication." In Proceedings of the 2021
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 522-
539. Society for Industrial and Applied Mathematics, 2021.

[10] Thottethodi, M, Chatterjee, S and Lebeck, A. “Tuning Strassen's
Matrix Multiplication for Memory Efficiency”. ACM/IEEE SC98
Conference (SC’98), 1998.

[11] J. A. Gunnels, G. M. Henry, and R. A. van de Geijn, “A family of
high-performance matrix multiplication algorithms,” Lecture Notes
in Computer Science (including Subser. Lect. Notes Artif. Intell.
Lect. Notes Bioinformatics), Vol. 2073, No. 2, pp. 51–60, 2001, doi:
10.1007/3-540-45545-0_15.

[12] Lederman, S, Jacobson, E, Johnson, J, Tsao, A and Turnbull, T.
“Implementation of Strassen’s algorithm for Matrix Multiplication”.
ACM/IEEE Conference on Supercomputing (SC’96), 1996.

[13] S. Huss-Lederman, E. M. Jacobson, A. Tsao, T. Turnbull, and J. R.
Johnson, “Implementation of Strassen’s algorithm for matrix
multiplication,” no. August, pp. 32-es, 1996, doi:
10.1145/369028.369096.

[14] R. A. Van De Geijn and J. Watts, “SUMMA: Scalable universal
matrix multiplication algorithm,” Concurr. Pract. Exp., vol. 9, no. 4,
pp. 255–274, 1997.

[15] D. W. Walker, “Accepted for publication in Concurrency: Practice
and Experience (1994) PUMMA: Parallel Universal Matrix
Multiplication Algorithms on Distributed Memory Concurrent
Computers 1,” Vol. 1, No. 1994, 2008.

[16] Ohtaki, Y. “Parallel Implementation of Strassen’s Matrix
Multiplication Algorithm for Heterogeneous Clusters”. IEEE. 18th
International Parallel and Distributed Processing Symposium
(IPDPS’04), 2004.

